haystack/test/nodes/test_generator.py
tstadel 382ca8094e
feat: PromptTemplate extensions (#4378)
* use outputshapers in prompttemplate

* fix pylint

* first iteration on regex

* implement new promptnode syntax based on f-strings

* finish fstring implementation

* add additional tests

* add security tests

* fix mypy

* fix pylint

* fix test_prompt_templates

* fix test_prompt_template_repr

* fix test_prompt_node_with_custom_invocation_layer

* fix test_invalid_template

* more security tests

* fix test_complex_pipeline_with_all_features

* fix agent tests

* refactor get_prompt_template

* fix test_prompt_template_syntax_parser

* fix test_complex_pipeline_with_all_features

* allow functions in comprehensions

* break out of fstring test

* fix additional tests

* mark new tests as unit tests

* fix agents tests

* convert missing templates

* proper use of get_prompt_template

* refactor and add docstrings

* fix tests

* fix pylint

* fix agents test

* fix tests

* refactor globals

* make allowed functions configurable via env variable

* better dummy variable

* fix special alias

* don't replace special char variables

* more special chars, better docstrings

* cherrypick fix audio tests

* fix test

* rework shapers

* fix pylint

* fix tests

* add new templates

* add reference parsing

* add more shaper tests

* add tests for join and to_string

* fix pylint

* fix pylint

* fix pylint for real

* auto fill shaper function params

* fix reference parsing for multiple references

* fix output variable inference

* consolidate qa prompt template output and make shaper work per-document

* fix types after merge

* introduce output_parser

* fix tests

* better docstring

* rename RegexAnswerParser to AnswerParser

* better docstrings
2023-03-27 12:14:11 +02:00

176 lines
7.7 KiB
Python

import os
import sys
from typing import List
import pytest
from haystack.schema import Document
from haystack.nodes.answer_generator import Seq2SeqGenerator, OpenAIAnswerGenerator
from haystack.pipelines import GenerativeQAPipeline
from haystack.nodes import PromptTemplate
import logging
@pytest.mark.integration
@pytest.mark.generator
def test_rag_token_generator(rag_generator, docs_with_true_emb):
query = "What is capital of the Germany?"
generated_docs = rag_generator.predict(query=query, documents=docs_with_true_emb, top_k=1)
answers = generated_docs["answers"]
assert len(answers) == 1
assert "berlin" in answers[0].answer
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["embedding"], indirect=True)
def test_generator_pipeline(document_store, retriever, rag_generator, docs_with_true_emb):
document_store.write_documents(docs_with_true_emb)
query = "What is capital of the Germany?"
pipeline = GenerativeQAPipeline(retriever=retriever, generator=rag_generator)
output = pipeline.run(query=query, params={"Generator": {"top_k": 2}, "Retriever": {"top_k": 1}})
answers = output["answers"]
assert len(answers) == 2
assert "berlin" in answers[0].answer
for doc_idx, document in enumerate(output["documents"]):
assert document.id == answers[0].document_ids[doc_idx]
assert document.meta == answers[0].meta["doc_metas"][doc_idx]
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="Causes OOM on windows github runner")
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["retribert", "dpr_lfqa"], indirect=True)
@pytest.mark.parametrize("lfqa_generator", ["yjernite/bart_eli5", "vblagoje/bart_lfqa"], indirect=True)
@pytest.mark.embedding_dim(128)
def test_lfqa_pipeline(document_store, retriever, lfqa_generator, docs_with_true_emb):
# reuse existing DOCS but regenerate embeddings with retribert
docs: List[Document] = []
for d in docs_with_true_emb:
docs.append(Document(content=d.content))
document_store.write_documents(docs)
document_store.update_embeddings(retriever)
query = "Tell me about Berlin?"
pipeline = GenerativeQAPipeline(generator=lfqa_generator, retriever=retriever)
output = pipeline.run(query=query, params={"top_k": 1})
answers = output["answers"]
assert len(answers) == 1, answers
assert "Germany" in answers[0].answer, answers[0].answer
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["retribert"], indirect=True)
@pytest.mark.embedding_dim(128)
def test_lfqa_pipeline_unknown_converter(document_store, retriever, docs_with_true_emb):
# reuse existing DOCS but regenerate embeddings with retribert
docs: List[Document] = []
for d in docs_with_true_emb:
docs.append(Document(content=d.content))
document_store.write_documents(docs)
document_store.update_embeddings(retriever)
seq2seq = Seq2SeqGenerator(model_name_or_path="patrickvonplaten/t5-tiny-random")
query = "Tell me about Berlin?"
pipeline = GenerativeQAPipeline(retriever=retriever, generator=seq2seq)
# raises exception as we don't have converter for "patrickvonplaten/t5-tiny-random" in Seq2SeqGenerator
with pytest.raises(Exception) as exception_info:
output = pipeline.run(query=query, params={"top_k": 1})
assert "doesn't have input converter registered for patrickvonplaten/t5-tiny-random" in str(exception_info.value)
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["retribert"], indirect=True)
@pytest.mark.embedding_dim(128)
def test_lfqa_pipeline_invalid_converter(document_store, retriever, docs_with_true_emb):
# reuse existing DOCS but regenerate embeddings with retribert
docs: List[Document] = []
for d in docs_with_true_emb:
docs.append(Document(content=d.content))
document_store.write_documents(docs)
document_store.update_embeddings(retriever)
class _InvalidConverter:
def __call__(self, some_invalid_para: str, another_invalid_param: str) -> None:
pass
seq2seq = Seq2SeqGenerator(
model_name_or_path="patrickvonplaten/t5-tiny-random", input_converter=_InvalidConverter()
)
query = "This query will fail due to InvalidConverter used"
pipeline = GenerativeQAPipeline(retriever=retriever, generator=seq2seq)
# raises exception as we are using invalid method signature in _InvalidConverter
with pytest.raises(Exception) as exception_info:
output = pipeline.run(query=query, params={"top_k": 1})
assert "does not have a valid __call__ method signature" in str(exception_info.value)
@pytest.mark.integration
@pytest.mark.parametrize("haystack_openai_config", ["openai", "azure"], indirect=True)
def test_openai_answer_generator(haystack_openai_config, docs):
if not haystack_openai_config:
pytest.skip("No API key found, skipping test")
openai_generator = OpenAIAnswerGenerator(
api_key=haystack_openai_config["api_key"],
azure_base_url=haystack_openai_config.get("azure_base_url", None),
azure_deployment_name=haystack_openai_config.get("azure_deployment_name", None),
model="text-babbage-001",
top_k=1,
)
prediction = openai_generator.predict(query="Who lives in Berlin?", documents=docs, top_k=1)
assert len(prediction["answers"]) == 1
assert "Carla" in prediction["answers"][0].answer
@pytest.mark.integration
@pytest.mark.parametrize("haystack_openai_config", ["openai", "azure"], indirect=True)
def test_openai_answer_generator_custom_template(haystack_openai_config, docs):
if not haystack_openai_config:
pytest.skip("No API key found, skipping test")
lfqa_prompt = PromptTemplate(
name="lfqa",
prompt_text="""
Synthesize a comprehensive answer from your knowledge and the following topk most relevant paragraphs and the given question.
\n===\Paragraphs: {context}\n===\n{query}""",
)
node = OpenAIAnswerGenerator(
api_key=haystack_openai_config["api_key"],
azure_base_url=haystack_openai_config.get("azure_base_url", None),
azure_deployment_name=haystack_openai_config.get("azure_deployment_name", None),
model="text-babbage-001",
top_k=1,
prompt_template=lfqa_prompt,
)
prediction = node.predict(query="Who lives in Berlin?", documents=docs, top_k=1)
assert len(prediction["answers"]) == 1
@pytest.mark.integration
@pytest.mark.parametrize("haystack_openai_config", ["openai", "azure"], indirect=True)
def test_openai_answer_generator_max_token(haystack_openai_config, docs, caplog):
if not haystack_openai_config:
pytest.skip("No API key found, skipping test")
openai_generator = OpenAIAnswerGenerator(
api_key=haystack_openai_config["api_key"],
azure_base_url=haystack_openai_config.get("azure_base_url", None),
azure_deployment_name=haystack_openai_config.get("azure_deployment_name", None),
model="text-babbage-001",
top_k=1,
)
openai_generator.MAX_TOKENS_LIMIT = 116
with caplog.at_level(logging.INFO):
prediction = openai_generator.predict(query="Who lives in Berlin?", documents=docs, top_k=1)
assert "Skipping all of the provided Documents" in caplog.text
assert len(prediction["answers"]) == 1
# Can't easily check content of answer since it is generative and can change between runs