mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-19 15:01:40 +00:00

* Refactor answer dataclasses * Add release notes * Fix tests * Fix end to end tests * Enhance ExtractiveReader
290 lines
8.5 KiB
Python
290 lines
8.5 KiB
Python
import pandas as pd
|
|
import pytest
|
|
|
|
from haystack import Document
|
|
from haystack.dataclasses.byte_stream import ByteStream
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"doc,doc_str",
|
|
[
|
|
(Document(content="test text"), "content: 'test text'"),
|
|
(
|
|
Document(dataframe=pd.DataFrame([["John", 25], ["Martha", 34]], columns=["name", "age"])),
|
|
"dataframe: (2, 2)",
|
|
),
|
|
(Document(blob=ByteStream(b"hello, test string")), "blob: 18 bytes"),
|
|
(
|
|
Document(
|
|
content="test text",
|
|
dataframe=pd.DataFrame([["John", 25], ["Martha", 34]], columns=["name", "age"]),
|
|
blob=ByteStream(b"hello, test string"),
|
|
),
|
|
"content: 'test text', dataframe: (2, 2), blob: 18 bytes",
|
|
),
|
|
],
|
|
)
|
|
def test_document_str(doc, doc_str):
|
|
assert f"Document(id={doc.id}, {doc_str})" == str(doc)
|
|
|
|
|
|
def test_init():
|
|
doc = Document()
|
|
assert doc.id == "d4675c57fcfe114db0b95f1da46eea3c5d6f5729c17d01fb5251ae19830a3455"
|
|
assert doc.content == None
|
|
assert doc.dataframe == None
|
|
assert doc.blob == None
|
|
assert doc.meta == {}
|
|
assert doc.score == None
|
|
assert doc.embedding == None
|
|
|
|
|
|
def test_init_with_wrong_parameters():
|
|
with pytest.raises(TypeError):
|
|
Document(text="")
|
|
|
|
|
|
def test_init_with_parameters():
|
|
blob_data = b"some bytes"
|
|
doc = Document(
|
|
content="test text",
|
|
dataframe=pd.DataFrame([0]),
|
|
blob=ByteStream(data=blob_data, mime_type="text/markdown"),
|
|
meta={"text": "test text"},
|
|
score=0.812,
|
|
embedding=[0.1, 0.2, 0.3],
|
|
)
|
|
assert doc.id == "ec92455f3f4576d40031163c89b1b4210b34ea1426ee0ff68ebed86cb7ba13f8"
|
|
assert doc.content == "test text"
|
|
assert doc.dataframe is not None
|
|
assert doc.dataframe.equals(pd.DataFrame([0]))
|
|
assert doc.blob.data == blob_data
|
|
assert doc.blob.mime_type == "text/markdown"
|
|
assert doc.meta == {"text": "test text"}
|
|
assert doc.score == 0.812
|
|
assert doc.embedding == [0.1, 0.2, 0.3]
|
|
|
|
|
|
def test_init_with_legacy_fields():
|
|
doc = Document(
|
|
content="test text", content_type="text", id_hash_keys=["content"], score=0.812, embedding=[0.1, 0.2, 0.3] # type: ignore
|
|
)
|
|
assert doc.id == "18fc2c114825872321cf5009827ca162f54d3be50ab9e9ffa027824b6ec223af"
|
|
assert doc.content == "test text"
|
|
assert doc.dataframe == None
|
|
assert doc.blob == None
|
|
assert doc.meta == {}
|
|
assert doc.score == 0.812
|
|
assert doc.embedding == [0.1, 0.2, 0.3]
|
|
|
|
|
|
def test_init_with_legacy_field():
|
|
doc = Document(
|
|
content="test text",
|
|
content_type="text", # type: ignore
|
|
id_hash_keys=["content"], # type: ignore
|
|
score=0.812,
|
|
embedding=[0.1, 0.2, 0.3],
|
|
meta={"date": "10-10-2023", "type": "article"},
|
|
)
|
|
assert doc.id == "a2c0321b34430cc675294611e55529fceb56140ca3202f1c59a43a8cecac1f43"
|
|
assert doc.content == "test text"
|
|
assert doc.dataframe == None
|
|
assert doc.meta == {"date": "10-10-2023", "type": "article"}
|
|
assert doc.score == 0.812
|
|
assert doc.embedding == [0.1, 0.2, 0.3]
|
|
|
|
|
|
def test_basic_equality_type_mismatch():
|
|
doc = Document(content="test text")
|
|
assert doc != "test text"
|
|
|
|
|
|
def test_basic_equality_id():
|
|
doc1 = Document(content="test text")
|
|
doc2 = Document(content="test text")
|
|
|
|
assert doc1 == doc2
|
|
|
|
doc1.id = "1234"
|
|
doc2.id = "5678"
|
|
|
|
assert doc1 != doc2
|
|
|
|
|
|
def test_to_dict():
|
|
doc = Document()
|
|
assert doc.to_dict() == {
|
|
"id": doc._create_id(),
|
|
"content": None,
|
|
"dataframe": None,
|
|
"blob": None,
|
|
"score": None,
|
|
"embedding": None,
|
|
}
|
|
|
|
|
|
def test_to_dict_without_flattening():
|
|
doc = Document()
|
|
assert doc.to_dict(flatten=False) == {
|
|
"id": doc._create_id(),
|
|
"content": None,
|
|
"dataframe": None,
|
|
"blob": None,
|
|
"meta": {},
|
|
"score": None,
|
|
"embedding": None,
|
|
}
|
|
|
|
|
|
def test_to_dict_with_custom_parameters():
|
|
doc = Document(
|
|
content="test text",
|
|
dataframe=pd.DataFrame([10, 20, 30]),
|
|
blob=ByteStream(b"some bytes", mime_type="application/pdf"),
|
|
meta={"some": "values", "test": 10},
|
|
score=0.99,
|
|
embedding=[10.0, 10.0],
|
|
)
|
|
|
|
assert doc.to_dict() == {
|
|
"id": doc.id,
|
|
"content": "test text",
|
|
"dataframe": pd.DataFrame([10, 20, 30]).to_json(),
|
|
"blob": {"data": list(b"some bytes"), "mime_type": "application/pdf"},
|
|
"some": "values",
|
|
"test": 10,
|
|
"score": 0.99,
|
|
"embedding": [10.0, 10.0],
|
|
}
|
|
|
|
|
|
def test_to_dict_with_custom_parameters_without_flattening():
|
|
doc = Document(
|
|
content="test text",
|
|
dataframe=pd.DataFrame([10, 20, 30]),
|
|
blob=ByteStream(b"some bytes", mime_type="application/pdf"),
|
|
meta={"some": "values", "test": 10},
|
|
score=0.99,
|
|
embedding=[10.0, 10.0],
|
|
)
|
|
|
|
assert doc.to_dict(flatten=False) == {
|
|
"id": doc.id,
|
|
"content": "test text",
|
|
"dataframe": pd.DataFrame([10, 20, 30]).to_json(),
|
|
"blob": {"data": list(b"some bytes"), "mime_type": "application/pdf"},
|
|
"meta": {"some": "values", "test": 10},
|
|
"score": 0.99,
|
|
"embedding": [10, 10],
|
|
}
|
|
|
|
|
|
def test_from_dict():
|
|
assert Document.from_dict({}) == Document()
|
|
|
|
|
|
def from_from_dict_with_parameters():
|
|
blob_data = b"some bytes"
|
|
assert Document.from_dict(
|
|
{
|
|
"content": "test text",
|
|
"dataframe": pd.DataFrame([0]).to_json(),
|
|
"blob": {"data": list(blob_data), "mime_type": "text/markdown"},
|
|
"meta": {"text": "test text"},
|
|
"score": 0.812,
|
|
"embedding": [0.1, 0.2, 0.3],
|
|
}
|
|
) == Document(
|
|
content="test text",
|
|
dataframe=pd.DataFrame([0]),
|
|
blob=ByteStream(blob_data, mime_type="text/markdown"),
|
|
meta={"text": "test text"},
|
|
score=0.812,
|
|
embedding=[0.1, 0.2, 0.3],
|
|
)
|
|
|
|
|
|
def test_from_dict_with_legacy_fields():
|
|
assert Document.from_dict(
|
|
{
|
|
"content": "test text",
|
|
"content_type": "text",
|
|
"id_hash_keys": ["content"],
|
|
"score": 0.812,
|
|
"embedding": [0.1, 0.2, 0.3],
|
|
}
|
|
) == Document(
|
|
content="test text", content_type="text", id_hash_keys=["content"], score=0.812, embedding=[0.1, 0.2, 0.3] # type: ignore
|
|
)
|
|
|
|
|
|
def test_from_dict_with_legacy_field_and_flat_meta():
|
|
assert Document.from_dict(
|
|
{
|
|
"content": "test text",
|
|
"content_type": "text",
|
|
"id_hash_keys": ["content"],
|
|
"score": 0.812,
|
|
"embedding": [0.1, 0.2, 0.3],
|
|
"date": "10-10-2023",
|
|
"type": "article",
|
|
}
|
|
) == Document(
|
|
content="test text",
|
|
content_type="text", # type: ignore
|
|
id_hash_keys=["content"], # type: ignore
|
|
score=0.812,
|
|
embedding=[0.1, 0.2, 0.3],
|
|
meta={"date": "10-10-2023", "type": "article"},
|
|
)
|
|
|
|
|
|
def test_from_dict_with_flat_meta():
|
|
blob_data = b"some bytes"
|
|
assert Document.from_dict(
|
|
{
|
|
"content": "test text",
|
|
"dataframe": pd.DataFrame([0]).to_json(),
|
|
"blob": {"data": list(blob_data), "mime_type": "text/markdown"},
|
|
"score": 0.812,
|
|
"embedding": [0.1, 0.2, 0.3],
|
|
"date": "10-10-2023",
|
|
"type": "article",
|
|
}
|
|
) == Document(
|
|
content="test text",
|
|
dataframe=pd.DataFrame([0]),
|
|
blob=ByteStream(blob_data, mime_type="text/markdown"),
|
|
score=0.812,
|
|
embedding=[0.1, 0.2, 0.3],
|
|
meta={"date": "10-10-2023", "type": "article"},
|
|
)
|
|
|
|
|
|
def test_from_dict_with_flat_and_non_flat_meta():
|
|
with pytest.raises(ValueError, match="Pass either the 'meta' parameter or flattened metadata keys"):
|
|
Document.from_dict(
|
|
{
|
|
"content": "test text",
|
|
"dataframe": pd.DataFrame([0]).to_json(),
|
|
"blob": {"data": list(b"some bytes"), "mime_type": "text/markdown"},
|
|
"score": 0.812,
|
|
"meta": {"test": 10},
|
|
"embedding": [0.1, 0.2, 0.3],
|
|
"date": "10-10-2023",
|
|
"type": "article",
|
|
}
|
|
)
|
|
|
|
|
|
def test_content_type():
|
|
assert Document(content="text").content_type == "text"
|
|
assert Document(dataframe=pd.DataFrame([0])).content_type == "table"
|
|
|
|
with pytest.raises(ValueError):
|
|
_ = Document().content_type
|
|
|
|
with pytest.raises(ValueError):
|
|
_ = Document(content="text", dataframe=pd.DataFrame([0])).content_type
|