haystack/test/test_reader.py
Malte Pietsch 4a6c9302b3
Redesign primitives - Document, Answer, Label (#1398)
* first draft / notes on new primitives

* wip label / feedback refactor

* rename doc.text -> doc.content. add doc.content_type

* add datatype for content

* remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field

* update converters for . Add warning for empty

* renam label.question -> label.query. Allow sorting of Answers.

* WIP primitives

* update ui/reader for new Answer format

* Improve Label. First refactoring of MultiLabel. Adjust eval code

* fixed workflow conflict with introducing new one (#1472)

* Add latest docstring and tutorial changes

* make add_eval_data() work again

* fix reader formats. WIP fix _extract_docs_and_labels_from_dict

* fix test reader

* Add latest docstring and tutorial changes

* fix another test case for reader

* fix mypy in farm reader.eval()

* fix mypy in farm reader.eval()

* WIP ORM refactor

* Add latest docstring and tutorial changes

* fix mypy weaviate

* make label and multilabel dataclasses

* bump mypy env in CI to python 3.8

* WIP refactor Label ORM

* WIP refactor Label ORM

* simplify tests for individual doc stores

* WIP refactoring markers of tests

* test alternative approach for tests with existing parametrization

* WIP refactor ORMs

* fix skip logic of already parametrized tests

* fix weaviate behaviour in tests - not parametrizing it in our general test cases.

* Add latest docstring and tutorial changes

* fix some tests

* remove sql from document_store_types

* fix markers for generator and pipeline test

* remove inmemory marker

* remove unneeded elasticsearch markers

* add dataclasses-json dependency. adjust ORM to just store JSON repr

* ignore type as dataclasses_json seems to miss functionality here

* update readme and contributing.md

* update contributing

* adjust example

* fix duplicate doc handling for custom index

* Add latest docstring and tutorial changes

* fix some ORM issues. fix get_all_labels_aggregated.

* update drop flags where get_all_labels_aggregated() was used before

* Add latest docstring and tutorial changes

* add to_json(). add + fix tests

* fix no_answer handling in label / multilabel

* fix duplicate docs in memory doc store. change primary key for sql doc table

* fix mypy issues

* fix mypy issues

* haystack/retriever/base.py

* fix test_write_document_meta[elastic]

* fix test_elasticsearch_custom_fields

* fix test_labels[elastic]

* fix crawler

* fix converter

* fix docx converter

* fix preprocessor

* fix test_utils

* fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations

* Add latest docstring and tutorial changes

* fix crawler test. fix ocrconverter attribute

* fix test_elasticsearch_custom_query

* fix generator pipeline

* fix ocr converter

* fix ragenerator

* Add latest docstring and tutorial changes

* fix test_load_and_save_yaml for elasticsearch

* fixes for pipeline tests

* fix faq pipeline

* fix pipeline tests

* Add latest docstring and tutorial changes

* fix weaviate

* Add latest docstring and tutorial changes

* trigger CI

* satisfy mypy

* Add latest docstring and tutorial changes

* satisfy mypy

* Add latest docstring and tutorial changes

* trigger CI

* fix question generation test

* fix ray. fix Q-generation

* fix translator test

* satisfy mypy

* wip refactor feedback rest api

* fix rest api feedback endpoint

* fix doc classifier

* remove relation of Labels -> Docs in SQL ORM

* fix faiss/milvus tests

* fix doc classifier test

* fix eval test

* fixing eval issues

* Add latest docstring and tutorial changes

* fix mypy

* WIP replace dataclasses-json with manual serialization

* Add latest docstring and tutorial changes

* revert to dataclass-json serialization for now. remove debug prints.

* update docstrings

* fix extractor. fix Answer Span init

* fix api test

* keep meta data of answers in reader.run()

* fix meta handling

* adress review feedback

* Add latest docstring and tutorial changes

* make document=None for open domain labels

* add import

* fix print utils

* fix rest api

* adress review feedback

* Add latest docstring and tutorial changes

* fix mypy

Co-authored-by: Markus Paff <markuspaff.mp@gmail.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-13 14:23:23 +02:00

166 lines
7.0 KiB
Python

import math
import pytest
from haystack import Document, Answer
from haystack.reader.base import BaseReader
from haystack.reader.farm import FARMReader
def test_reader_basic(reader):
assert reader is not None
assert isinstance(reader, BaseReader)
def test_output(prediction):
assert prediction is not None
assert prediction["query"] == "Who lives in Berlin?"
assert prediction["answers"][0].answer == "Carla"
assert prediction["answers"][0].offsets_in_context[0].start == 11
assert prediction["answers"][0].offsets_in_context[0].end== 16
assert prediction["answers"][0].score <= 1
assert prediction["answers"][0].score >= 0
assert prediction["answers"][0].context == "My name is Carla and I live in Berlin"
assert len(prediction["answers"]) == 5
@pytest.mark.slow
def test_no_answer_output(no_answer_prediction):
assert no_answer_prediction is not None
assert no_answer_prediction["query"] == "What is the meaning of life?"
assert math.isclose(no_answer_prediction["no_ans_gap"], -13.048564434051514, rel_tol=0.0001)
assert no_answer_prediction["answers"][0].answer == ""
assert no_answer_prediction["answers"][0].offsets_in_context[0].start == 0
assert no_answer_prediction["answers"][0].offsets_in_context[0].end == 0
assert no_answer_prediction["answers"][0].score <= 1
assert no_answer_prediction["answers"][0].score >= 0
assert no_answer_prediction["answers"][0].context == None
assert no_answer_prediction["answers"][0].document_id == None
answers = [x.answer for x in no_answer_prediction["answers"]]
assert answers.count("") == 1
assert len(no_answer_prediction["answers"]) == 5
# TODO Directly compare farm and transformers reader outputs
# TODO checks to see that model is responsive to input arguments e.g. context_window_size - topk
@pytest.mark.slow
def test_prediction_attributes(prediction):
# TODO FARM's prediction also has no_ans_gap
attributes_gold = ["query", "answers"]
for ag in attributes_gold:
assert ag in prediction
def test_answer_attributes(prediction):
# TODO Transformers answer also has meta key
answer = prediction["answers"][0]
assert type(answer) == Answer
attributes_gold = ['answer', 'score', 'context', 'offsets_in_context', 'offsets_in_document','type']
for ag in attributes_gold:
assert getattr(answer,ag,None) is not None
@pytest.mark.slow
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
@pytest.mark.parametrize("window_size", [10, 15, 20])
def test_context_window_size(reader, test_docs_xs, window_size):
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
assert isinstance(reader, FARMReader)
old_window_size = reader.inferencer.model.prediction_heads[0].context_window_size
reader.inferencer.model.prediction_heads[0].context_window_size = window_size
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=5)
for answer in prediction["answers"]:
# If the extracted answer is larger than the context window, the context window is expanded.
# If the extracted answer is odd in length, the resulting context window is one less than context_window_size
# due to rounding (See FARM's QACandidate)
# TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different
if len(answer.answer) <= window_size:
assert len(answer.context) in [window_size, window_size - 1]
else:
assert len(answer.answer) == len(answer.context)
reader.inferencer.model.prediction_heads[0].context_window_size = old_window_size
# TODO Need to test transformers reader
# TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
@pytest.mark.parametrize("top_k", [2, 5, 10])
def test_top_k(reader, test_docs_xs, top_k):
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
assert isinstance(reader, FARMReader)
old_top_k_per_candidate = reader.top_k_per_candidate
reader.top_k_per_candidate = 4
reader.inferencer.model.prediction_heads[0].n_best = reader.top_k_per_candidate + 1
try:
old_top_k_per_sample = reader.inferencer.model.prediction_heads[0].n_best_per_sample
reader.inferencer.model.prediction_heads[0].n_best_per_sample = 4
except:
print("WARNING: Could not set `top_k_per_sample` in FARM. Please update FARM version.")
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=top_k)
assert len(prediction["answers"]) == top_k
reader.top_k_per_candidate = old_top_k_per_candidate
reader.inferencer.model.prediction_heads[0].n_best = reader.top_k_per_candidate + 1
try:
reader.inferencer.model.prediction_heads[0].n_best_per_sample = old_top_k_per_sample
except:
print("WARNING: Could not set `top_k_per_sample` in FARM. Please update FARM version.")
def test_farm_reader_update_params(test_docs_xs):
reader = FARMReader(
model_name_or_path="deepset/roberta-base-squad2",
use_gpu=False,
no_ans_boost=0,
num_processes=0
)
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
# original reader
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
assert len(prediction["answers"]) == 3
assert prediction["answers"][0].answer == "Carla"
# update no_ans_boost
reader.update_parameters(
context_window_size=100, no_ans_boost=100, return_no_answer=True, max_seq_len=384, doc_stride=128
)
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
assert len(prediction["answers"]) == 3
assert prediction["answers"][0].answer == ""
# update no_ans_boost
reader.update_parameters(
context_window_size=100, no_ans_boost=0, return_no_answer=False, max_seq_len=384, doc_stride=128
)
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
assert len(prediction["answers"]) == 3
assert None not in [ans.answer for ans in prediction["answers"]]
# update context_window_size
reader.update_parameters(context_window_size=6, no_ans_boost=-10, max_seq_len=384, doc_stride=128)
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
assert len(prediction["answers"]) == 3
assert len(prediction["answers"][0].context) == 6
# update doc_stride with invalid value
with pytest.raises(Exception):
reader.update_parameters(context_window_size=100, no_ans_boost=-10, max_seq_len=384, doc_stride=999)
reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
# update max_seq_len with invalid value
with pytest.raises(Exception):
reader.update_parameters(context_window_size=6, no_ans_boost=-10, max_seq_len=99, doc_stride=128)
reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)