mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-08-11 18:17:53 +00:00

* Enable Support for Meta LLama-2 Models in Amazon Sagemaker * Improve unit test for invocation layers positioning * Small adjustment, add more unit tests * mypy fixes * Improve unit tests * Update test/prompt/invocation_layer/test_sagemaker_meta.py Co-authored-by: Stefano Fiorucci <44616784+anakin87@users.noreply.github.com> * PR feedback * Add pydocs for newly extracted methods * simplify is_proper_chat_* --------- Co-authored-by: Stefano Fiorucci <44616784+anakin87@users.noreply.github.com> Co-authored-by: anakin87 <stefanofiorucci@gmail.com>
474 lines
18 KiB
Python
474 lines
18 KiB
Python
import os
|
|
from unittest.mock import patch, MagicMock, Mock
|
|
|
|
import pytest
|
|
|
|
from haystack.lazy_imports import LazyImport
|
|
|
|
from haystack.errors import SageMakerConfigurationError
|
|
from haystack.nodes.prompt.invocation_layer import SageMakerMetaInvocationLayer
|
|
|
|
with LazyImport() as boto3_import:
|
|
from botocore.exceptions import BotoCoreError
|
|
|
|
|
|
# create a fixture with mocked boto3 client and session
|
|
@pytest.fixture
|
|
def mock_boto3_session():
|
|
with patch("boto3.Session") as mock_client:
|
|
yield mock_client
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_prompt_handler():
|
|
with patch("haystack.nodes.prompt.invocation_layer.handlers.DefaultPromptHandler") as mock_prompt_handler:
|
|
yield mock_prompt_handler
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_default_constructor(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test that the default constructor sets the correct values
|
|
"""
|
|
|
|
layer = SageMakerMetaInvocationLayer(
|
|
model_name_or_path="some_fake_model",
|
|
max_length=99,
|
|
aws_access_key_id="some_fake_id",
|
|
aws_secret_access_key="some_fake_key",
|
|
aws_session_token="some_fake_token",
|
|
aws_profile_name="some_fake_profile",
|
|
aws_region_name="fake_region",
|
|
)
|
|
|
|
assert layer.max_length == 99
|
|
assert layer.model_name_or_path == "some_fake_model"
|
|
|
|
assert layer.prompt_handler is not None
|
|
assert layer.prompt_handler.model_max_length == 4096
|
|
|
|
# assert mocked boto3 client called exactly once
|
|
mock_boto3_session.assert_called_once()
|
|
|
|
# assert mocked boto3 client was called with the correct parameters
|
|
mock_boto3_session.assert_called_with(
|
|
aws_access_key_id="some_fake_id",
|
|
aws_secret_access_key="some_fake_key",
|
|
aws_session_token="some_fake_token",
|
|
profile_name="some_fake_profile",
|
|
region_name="fake_region",
|
|
)
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_constructor_prompt_handler_initialized(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test that the constructor sets the prompt_handler correctly, with the correct model_max_length for llama-2
|
|
"""
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="some_fake_model", prompt_handler=mock_prompt_handler)
|
|
assert layer.prompt_handler is not None
|
|
assert layer.prompt_handler.model_max_length == 4096
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_constructor_with_model_kwargs(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test that model_kwargs are correctly set in the constructor
|
|
"""
|
|
model_kwargs = {"temperature": 0.7}
|
|
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="some_fake_model", **model_kwargs)
|
|
assert "temperature" in layer.model_input_kwargs
|
|
assert layer.model_input_kwargs["temperature"] == 0.7
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_constructor_with_empty_model_name():
|
|
"""
|
|
Test that the constructor raises an error when the model_name_or_path is empty
|
|
"""
|
|
with pytest.raises(ValueError, match="cannot be None or empty string"):
|
|
SageMakerMetaInvocationLayer(model_name_or_path="")
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_invoke_with_no_kwargs(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test invoke raises an error if no prompt is provided
|
|
"""
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="some_fake_model")
|
|
with pytest.raises(ValueError) as e:
|
|
layer.invoke()
|
|
assert e.match("No prompt provided.")
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_invoke_with_stop_words(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
SageMakerMetaInvocationLayer does not support stop words. Tests that they'll be ignored
|
|
"""
|
|
stop_words = ["but", "not", "bye"]
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="some_model")
|
|
with patch("haystack.nodes.prompt.invocation_layer.SageMakerMetaInvocationLayer._post") as mock_post:
|
|
# Mock the response, need to return a list of dicts
|
|
mock_post.return_value = MagicMock(text='[{"generated_text": "Hello"}]')
|
|
|
|
layer.invoke(prompt="Tell me hello", stop_words=stop_words)
|
|
|
|
assert mock_post.called
|
|
_, call_kwargs = mock_post.call_args
|
|
assert "stop_words" not in call_kwargs["params"]
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_short_prompt_is_not_truncated(mock_boto3_session):
|
|
"""
|
|
Test that a short prompt is not truncated
|
|
"""
|
|
# Define a short mock prompt and its tokenized version
|
|
mock_prompt_text = "I am a tokenized prompt"
|
|
mock_prompt_tokens = mock_prompt_text.split()
|
|
|
|
# Mock the tokenizer so it returns our predefined tokens
|
|
mock_tokenizer = MagicMock()
|
|
mock_tokenizer.tokenize.return_value = mock_prompt_tokens
|
|
|
|
# We set a small max_length for generated text (3 tokens) and a total model_max_length of 10 tokens
|
|
# Since our mock prompt is 5 tokens long, it doesn't exceed the
|
|
# total limit (5 prompt tokens + 3 generated tokens < 10 tokens)
|
|
max_length_generated_text = 3
|
|
total_model_max_length = 10
|
|
|
|
with patch("transformers.AutoTokenizer.from_pretrained", return_value=mock_tokenizer):
|
|
layer = SageMakerMetaInvocationLayer(
|
|
"some_fake_endpoint", max_length=max_length_generated_text, model_max_length=total_model_max_length
|
|
)
|
|
prompt_after_resize = layer._ensure_token_limit(mock_prompt_text)
|
|
|
|
# The prompt doesn't exceed the limit, _ensure_token_limit doesn't truncate it
|
|
assert prompt_after_resize == mock_prompt_text
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_long_prompt_is_truncated(mock_boto3_session):
|
|
"""
|
|
Test that a long prompt is truncated
|
|
"""
|
|
# Define a long mock prompt and its tokenized version
|
|
long_prompt_text = "I am a tokenized prompt of length eight"
|
|
long_prompt_tokens = long_prompt_text.split()
|
|
|
|
# _ensure_token_limit will truncate the prompt to make it fit into the model's max token limit
|
|
truncated_prompt_text = "I am a tokenized prompt of length"
|
|
|
|
# Mock the tokenizer to return our predefined tokens
|
|
# convert tokens to our predefined truncated text
|
|
mock_tokenizer = MagicMock()
|
|
mock_tokenizer.tokenize.return_value = long_prompt_tokens
|
|
mock_tokenizer.convert_tokens_to_string.return_value = truncated_prompt_text
|
|
|
|
# We set a small max_length for generated text (3 tokens) and a total model_max_length of 10 tokens
|
|
# Our mock prompt is 8 tokens long, so it exceeds the total limit (8 prompt tokens + 3 generated tokens > 10 tokens)
|
|
max_length_generated_text = 3
|
|
total_model_max_length = 10
|
|
|
|
with patch("transformers.AutoTokenizer.from_pretrained", return_value=mock_tokenizer):
|
|
layer = SageMakerMetaInvocationLayer(
|
|
"some_fake_endpoint", max_length=max_length_generated_text, model_max_length=total_model_max_length
|
|
)
|
|
prompt_after_resize = layer._ensure_token_limit(long_prompt_text)
|
|
|
|
# The prompt exceeds the limit, _ensure_token_limit truncates it
|
|
assert prompt_after_resize == truncated_prompt_text
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_streaming_init_kwarg(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test stream parameter passed as init kwarg raises an error on layer invocation
|
|
"""
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="irrelevant", stream=True)
|
|
|
|
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
|
|
layer.invoke(prompt="Tell me hello")
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_streaming_invoke_kwarg(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test stream parameter passed as invoke kwarg raises an error on layer invocation
|
|
"""
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="irrelevant")
|
|
|
|
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
|
|
layer.invoke(prompt="Tell me hello", stream=True)
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_streaming_handler_init_kwarg(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test stream_handler parameter passed as init kwarg raises an error on layer invocation
|
|
"""
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="irrelevant", stream_handler=Mock())
|
|
|
|
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
|
|
layer.invoke(prompt="Tell me hello")
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_streaming_handler_invoke_kwarg(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test stream_handler parameter passed as invoke kwarg raises an error on layer invocation
|
|
"""
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="irrelevant")
|
|
|
|
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
|
|
layer.invoke(prompt="Tell me hello", stream_handler=Mock())
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_supports_for_valid_aws_configuration():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer identifies a valid SageMaker Inference endpoint via the supports() method
|
|
"""
|
|
mock_client = MagicMock()
|
|
mock_client.describe_endpoint.return_value = {"EndpointStatus": "InService"}
|
|
|
|
mock_session = MagicMock()
|
|
mock_session.client.return_value = mock_client
|
|
|
|
# Patch the class method to return the mock session
|
|
with patch(
|
|
"haystack.nodes.prompt.invocation_layer.sagemaker_base.SageMakerBaseInvocationLayer.create_session",
|
|
return_value=mock_session,
|
|
):
|
|
supported = SageMakerMetaInvocationLayer.supports(
|
|
model_name_or_path="some_sagemaker_deployed_model",
|
|
aws_profile_name="some_real_profile",
|
|
aws_custom_attributes={"accept_eula": True},
|
|
)
|
|
args, kwargs = mock_client.describe_endpoint.call_args
|
|
assert kwargs["EndpointName"] == "some_sagemaker_deployed_model"
|
|
|
|
args, kwargs = mock_session.client.call_args
|
|
assert args[0] == "sagemaker-runtime"
|
|
assert supported
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_supports_not_on_invalid_aws_profile_name():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer raises SageMakerConfigurationError when the profile name is invalid
|
|
"""
|
|
|
|
with patch("boto3.Session") as mock_boto3_session:
|
|
mock_boto3_session.side_effect = BotoCoreError()
|
|
with pytest.raises(SageMakerConfigurationError) as exc_info:
|
|
supported = SageMakerMetaInvocationLayer.supports(
|
|
model_name_or_path="some_fake_model",
|
|
aws_profile_name="some_fake_profile",
|
|
aws_custom_attributes={"accept_eula": True},
|
|
)
|
|
assert "Failed to initialize the session" in exc_info.value
|
|
assert not supported
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_supports_not_on_missing_eula():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer is not supported when the EULA is missing
|
|
"""
|
|
|
|
mock_client = MagicMock()
|
|
mock_client.describe_endpoint.return_value = {"EndpointStatus": "InService"}
|
|
|
|
mock_session = MagicMock()
|
|
mock_session.client.return_value = mock_client
|
|
|
|
# Patch the class method to return the mock session
|
|
with patch(
|
|
"haystack.nodes.prompt.invocation_layer.sagemaker_base.SageMakerBaseInvocationLayer.create_session",
|
|
return_value=mock_session,
|
|
):
|
|
supported = SageMakerMetaInvocationLayer.supports(
|
|
model_name_or_path="some_sagemaker_deployed_model", aws_profile_name="some_real_profile"
|
|
)
|
|
|
|
assert not supported
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_supports_not_on_eula_not_accepted():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer is not supported when the EULA is not accepted
|
|
"""
|
|
|
|
mock_client = MagicMock()
|
|
mock_client.describe_endpoint.return_value = {"EndpointStatus": "InService"}
|
|
|
|
mock_session = MagicMock()
|
|
mock_session.client.return_value = mock_client
|
|
|
|
# Patch the class method to return the mock session
|
|
with patch(
|
|
"haystack.nodes.prompt.invocation_layer.sagemaker_base.SageMakerBaseInvocationLayer.create_session",
|
|
return_value=mock_session,
|
|
):
|
|
supported = SageMakerMetaInvocationLayer.supports(
|
|
model_name_or_path="some_sagemaker_deployed_model",
|
|
aws_profile_name="some_real_profile",
|
|
aws_custom_attributes={"accept_eula": False},
|
|
)
|
|
assert not supported
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_format_custom_attributes_with_non_empty_dict():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer correctly formats the custom attributes, attributes specified
|
|
"""
|
|
attributes = {"key1": "value1", "key2": "value2"}
|
|
expected_output = "key1=value1;key2=value2"
|
|
assert SageMakerMetaInvocationLayer.format_custom_attributes(attributes) == expected_output
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_format_custom_attributes_with_empty_dict():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer correctly formats the custom attributes, attributes not specified
|
|
"""
|
|
attributes = {}
|
|
expected_output = ""
|
|
assert SageMakerMetaInvocationLayer.format_custom_attributes(attributes) == expected_output
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_format_custom_attributes_with_none():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer correctly formats the custom attributes, attributes are None
|
|
"""
|
|
attributes = None
|
|
expected_output = ""
|
|
assert SageMakerMetaInvocationLayer.format_custom_attributes(attributes) == expected_output
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_format_custom_attributes_with_bool_value():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer correctly formats the custom attributes, attributes are bool
|
|
"""
|
|
attributes = {"key1": True, "key2": False}
|
|
expected_output = "key1=true;key2=false"
|
|
assert SageMakerMetaInvocationLayer.format_custom_attributes(attributes) == expected_output
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_format_custom_attributes_with_single_bool_value():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer correctly formats the custom attributes, attributes are single bool
|
|
"""
|
|
attributes = {"key1": True}
|
|
expected_output = "key1=true"
|
|
assert SageMakerMetaInvocationLayer.format_custom_attributes(attributes) == expected_output
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_format_custom_attributes_with_int_value():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer correctly formats the custom attributes, attributes are ints
|
|
"""
|
|
attributes = {"key1": 1, "key2": 2}
|
|
expected_output = "key1=1;key2=2"
|
|
assert SageMakerMetaInvocationLayer.format_custom_attributes(attributes) == expected_output
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_invoke_chat_format(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer accepts a chat in the correct format
|
|
"""
|
|
# test the format of the chat, no exception should be raised
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="some_fake_model")
|
|
prompt = [[{"role": "user", "content": "Hello"}]]
|
|
expected_response = [[{"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hello there"}]]
|
|
|
|
with patch("haystack.nodes.prompt.invocation_layer.sagemaker_meta.SageMakerMetaInvocationLayer._post") as mock_post:
|
|
mock_post.return_value = expected_response
|
|
layer.invoke(prompt=prompt)
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_invoke_invalid_chat_format(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer raises an exception when the chat is in the wrong format
|
|
"""
|
|
# test the invalid format of the chat, should raise an exception
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="some_fake_model")
|
|
prompt = [{"roe": "user", "cotent": "Hello"}]
|
|
expected_response = [[{"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hello there"}]]
|
|
|
|
with patch("haystack.nodes.prompt.invocation_layer.sagemaker_meta.SageMakerMetaInvocationLayer._post") as mock_post:
|
|
mock_post.return_value = expected_response
|
|
with pytest.raises(ValueError, match="The prompt format is different than what the model expects"):
|
|
layer.invoke(prompt=prompt)
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_invoke_prompt_string(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer accepts a prompt in the correct string format
|
|
"""
|
|
# test the format of the prompt instruction, no exception should be raised
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="some_fake_model")
|
|
with patch("haystack.nodes.prompt.invocation_layer.sagemaker_meta.SageMakerMetaInvocationLayer._post") as mock_post:
|
|
mock_post.return_value = ["Hello there"]
|
|
layer.invoke(prompt="Hello")
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_invoke_empty_prompt(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer raises an exception when the prompt is empty string
|
|
"""
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="some_fake_model")
|
|
with pytest.raises(ValueError):
|
|
layer.invoke(prompt="")
|
|
|
|
|
|
@pytest.mark.unit
|
|
def test_invoke_improper_prompt_type(mock_auto_tokenizer, mock_boto3_session):
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer raises an exception when the prompt is int instead of str
|
|
"""
|
|
layer = SageMakerMetaInvocationLayer(model_name_or_path="some_fake_model")
|
|
prompt = 123
|
|
with pytest.raises(ValueError):
|
|
layer.invoke(prompt=prompt)
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT", None), reason="Skipping because SageMaker not configured"
|
|
)
|
|
@pytest.mark.integration
|
|
def test_supports_triggered_for_valid_sagemaker_endpoint():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer identifies a valid SageMaker Inference endpoint via the supports() method
|
|
"""
|
|
model_name_or_path = os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT")
|
|
assert SageMakerMetaInvocationLayer.supports(model_name_or_path=model_name_or_path)
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT", None), reason="Skipping because SageMaker not configured"
|
|
)
|
|
@pytest.mark.integration
|
|
def test_supports_not_triggered_for_invalid_iam_profile():
|
|
"""
|
|
Test that the SageMakerMetaInvocationLayer identifies an invalid SageMaker Inference endpoint
|
|
(in this case because of an invalid IAM AWS Profile via the supports() method)
|
|
"""
|
|
assert not SageMakerMetaInvocationLayer.supports(model_name_or_path="fake_endpoint")
|
|
assert not SageMakerMetaInvocationLayer.supports(
|
|
model_name_or_path="fake_endpoint", aws_profile_name="invalid-profile"
|
|
)
|