haystack/haystack/nodes/retriever/_openai_encoder.py
Sebastian 44509cd6a1
feat: Add OpenAIError to retry mechanism (#4178)
* Add OpenAIError to retry mechanism. Use env variable for timeout for OpenAI request in PromptNode.

* Updated retry in OpenAI embedding encoder as well.

* Empty commit
2023-02-17 13:17:44 +01:00

163 lines
6.5 KiB
Python

import json
import logging
import os
import platform
import sys
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
import numpy as np
import requests
from tqdm.auto import tqdm
from haystack.environment import (
HAYSTACK_REMOTE_API_BACKOFF_SEC,
HAYSTACK_REMOTE_API_MAX_RETRIES,
HAYSTACK_REMOTE_API_TIMEOUT_SEC,
)
from haystack.errors import OpenAIError, OpenAIRateLimitError
from haystack.nodes.retriever._base_embedding_encoder import _BaseEmbeddingEncoder
from haystack.schema import Document
from haystack.utils.reflection import retry_with_exponential_backoff
if TYPE_CHECKING:
from haystack.nodes.retriever import EmbeddingRetriever
logger = logging.getLogger(__name__)
machine = platform.machine().lower()
system = platform.system()
USE_TIKTOKEN = False
if sys.version_info >= (3, 8) and (machine in ["amd64", "x86_64"] or (machine == "arm64" and system == "Darwin")):
USE_TIKTOKEN = True
if USE_TIKTOKEN:
import tiktoken # pylint: disable=import-error
else:
logger.warning(
"OpenAI tiktoken module is not available for Python < 3.8,Linux ARM64 and AARCH64. Falling back to GPT2TokenizerFast."
)
from transformers import GPT2TokenizerFast, PreTrainedTokenizerFast
OPENAI_TIMEOUT = float(os.environ.get(HAYSTACK_REMOTE_API_TIMEOUT_SEC, 30))
OPENAI_BACKOFF = float(os.environ.get(HAYSTACK_REMOTE_API_BACKOFF_SEC, 10))
OPENAI_MAX_RETRIES = int(os.environ.get(HAYSTACK_REMOTE_API_MAX_RETRIES, 5))
logger = logging.getLogger(__name__)
class _OpenAIEmbeddingEncoder(_BaseEmbeddingEncoder):
def __init__(self, retriever: "EmbeddingRetriever"):
# See https://beta.openai.com/docs/guides/embeddings for more details
self.url = "https://api.openai.com/v1/embeddings"
self.api_key = retriever.api_key
self.batch_size = min(64, retriever.batch_size)
self.progress_bar = retriever.progress_bar
model_class: str = next(
(m for m in ["ada", "babbage", "davinci", "curie"] if m in retriever.embedding_model), "babbage"
)
tokenizer = self._setup_encoding_models(model_class, retriever.embedding_model, retriever.max_seq_len)
if USE_TIKTOKEN:
logger.debug("Using tiktoken %s tokenizer", tokenizer)
self._tk_tokenizer: tiktoken.Encoding = tiktoken.get_encoding(tokenizer)
else:
logger.debug("Using GPT2TokenizerFast tokenizer")
self._hf_tokenizer: PreTrainedTokenizerFast = GPT2TokenizerFast.from_pretrained(tokenizer)
def _setup_encoding_models(self, model_class: str, model_name: str, max_seq_len: int):
"""
Setup the encoding models for the retriever.
"""
tokenizer_name = "gpt2"
# new generation of embedding models (December 2022), we need to specify the full name
if model_name.endswith("-002"):
self.query_encoder_model = model_name
self.doc_encoder_model = model_name
self.max_seq_len = min(8191, max_seq_len)
if USE_TIKTOKEN:
tokenizer_name = "cl100k_base"
else:
self.query_encoder_model = f"text-search-{model_class}-query-001"
self.doc_encoder_model = f"text-search-{model_class}-doc-001"
self.max_seq_len = min(2046, max_seq_len)
return tokenizer_name
def _ensure_text_limit(self, text: str) -> str:
"""
Ensure that length of the text is within the maximum length of the model.
OpenAI v1 embedding models have a limit of 2046 tokens, and v2 models have a limit of 8191 tokens.
"""
if USE_TIKTOKEN:
tokenized_payload = self._tk_tokenizer.encode(text)
decoded_string = self._tk_tokenizer.decode(tokenized_payload[: self.max_seq_len])
else:
tokenized_payload = self._hf_tokenizer.tokenize(text)
decoded_string = self._hf_tokenizer.convert_tokens_to_string(tokenized_payload[: self.max_seq_len])
return decoded_string
@retry_with_exponential_backoff(
backoff_in_seconds=OPENAI_BACKOFF, max_retries=OPENAI_MAX_RETRIES, errors=(OpenAIRateLimitError, OpenAIError)
)
def embed(self, model: str, text: List[str]) -> np.ndarray:
payload = {"model": model, "input": text}
headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
response = requests.request("POST", self.url, headers=headers, data=json.dumps(payload), timeout=OPENAI_TIMEOUT)
res = json.loads(response.text)
if response.status_code != 200:
openai_error: OpenAIError
if response.status_code == 429:
openai_error = OpenAIRateLimitError(f"API rate limit exceeded: {response.text}")
else:
openai_error = OpenAIError(
f"OpenAI returned an error.\n"
f"Status code: {response.status_code}\n"
f"Response body: {response.text}",
status_code=response.status_code,
)
raise openai_error
unordered_embeddings = [(ans["index"], ans["embedding"]) for ans in res["data"]]
ordered_embeddings = sorted(unordered_embeddings, key=lambda x: x[0])
generated_embeddings = [emb[1] for emb in ordered_embeddings]
return np.array(generated_embeddings)
def embed_batch(self, model: str, text: List[str]) -> np.ndarray:
all_embeddings = []
for i in tqdm(
range(0, len(text), self.batch_size), disable=not self.progress_bar, desc="Calculating embeddings"
):
batch = text[i : i + self.batch_size]
batch_limited = [self._ensure_text_limit(content) for content in batch]
generated_embeddings = self.embed(model, batch_limited)
all_embeddings.append(generated_embeddings)
return np.concatenate(all_embeddings)
def embed_queries(self, queries: List[str]) -> np.ndarray:
return self.embed_batch(self.query_encoder_model, queries)
def embed_documents(self, docs: List[Document]) -> np.ndarray:
return self.embed_batch(self.doc_encoder_model, [d.content for d in docs])
def train(
self,
training_data: List[Dict[str, Any]],
learning_rate: float = 2e-5,
n_epochs: int = 1,
num_warmup_steps: Optional[int] = None,
batch_size: int = 16,
):
raise NotImplementedError(f"Training is not implemented for {self.__class__}")
def save(self, save_dir: Union[Path, str]):
raise NotImplementedError(f"Saving is not implemented for {self.__class__}")