Sebastian 44e2b1beed
Resolving issue 2853: no answer logic in FARMReader (#2856)
* Update FARMReader.eval_on_file to be consistent with FARMReader.eval

* Update Documentation & Code Style

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-08-11 16:45:03 +02:00

205 lines
10 KiB
Python

from typing import Dict, List, Optional, Any
import logging
import numbers
import torch
import numpy as np
from tqdm import tqdm
from haystack.modeling.evaluation.metrics import compute_metrics, compute_report_metrics
from haystack.modeling.model.adaptive_model import AdaptiveModel
from haystack.modeling.model.biadaptive_model import BiAdaptiveModel
from haystack.utils.experiment_tracking import Tracker as tracker
from haystack.modeling.visual import BUSH_SEP
logger = logging.getLogger(__name__)
class Evaluator:
"""
Handles evaluation of a given model over a specified dataset.
"""
def __init__(self, data_loader: torch.utils.data.DataLoader, tasks, device: torch.device, report: bool = True):
"""
:param data_loader: The PyTorch DataLoader that will return batches of data from the evaluation dataset
:param tesks:
:param device: The device on which the tensors should be processed. Choose from torch.device("cpu") and torch.device("cuda").
:param report: Whether an eval report should be generated (e.g. classification report per class).
"""
self.data_loader = data_loader
self.tasks = tasks
self.device = device
self.report = report
def eval(
self,
model: AdaptiveModel,
return_preds_and_labels: bool = False,
calibrate_conf_scores: bool = False,
use_confidence_scores_for_ranking: bool = True,
use_no_answer_legacy_confidence: bool = False,
) -> List[Dict]:
"""
Performs evaluation on a given model.
:param model: The model on which to perform evaluation
:param return_preds_and_labels: Whether to add preds and labels in the returned dicts of the
:param calibrate_conf_scores: Whether to calibrate the temperature for scaling of the confidence scores.
:param use_confidence_scores_for_ranking: Whether to sort answers by confidence score (normalized between 0 and 1)(default) or by standard score (unbounded).
:param use_no_answer_legacy_confidence: Whether to use the legacy confidence definition for no_answer: difference
between the best overall answer confidence and the no_answer gap confidence.
Otherwise, we use the no_answer score normalized to a range of [0,1] by
an expit function (default).
:return: all_results: A list of dictionaries, one for each prediction head. Each dictionary contains the metrics
and reports generated during evaluation.
"""
model.prediction_heads[0].use_confidence_scores_for_ranking = use_confidence_scores_for_ranking
model.prediction_heads[0].use_no_answer_legacy_confidence = use_no_answer_legacy_confidence
model.eval()
# init empty lists per prediction head
loss_all: List = [0 for _ in model.prediction_heads]
preds_all: List = [[] for _ in model.prediction_heads]
label_all: List = [[] for _ in model.prediction_heads]
ids_all: List = [[] for _ in model.prediction_heads]
passage_start_t_all: List = [[] for _ in model.prediction_heads]
logits_all: List = [[] for _ in model.prediction_heads]
for step, batch in enumerate(tqdm(self.data_loader, desc="Evaluating", mininterval=10)):
batch = {key: batch[key].to(self.device) for key in batch}
with torch.no_grad():
if isinstance(model, AdaptiveModel):
logits = model.forward(
input_ids=batch.get("input_ids", None),
segment_ids=batch.get("segment_ids", None),
padding_mask=batch.get("padding_mask", None),
output_hidden_states=batch.get("output_hidden_states", False),
output_attentions=batch.get("output_attentions", False),
)
elif isinstance(model, BiAdaptiveModel):
logits = model.forward(
query_input_ids=batch.get("query_input_ids", None),
query_segment_ids=batch.get("query_segment_ids", None),
query_attention_mask=batch.get("query_attention_mask", None),
passage_input_ids=batch.get("passage_input_ids", None),
passage_segment_ids=batch.get("passage_segment_ids", None),
passage_attention_mask=batch.get("passage_attention_mask", None),
)
else:
logits = model.forward(**batch)
losses_per_head = model.logits_to_loss_per_head(logits=logits, **batch)
preds = model.logits_to_preds(logits=logits, **batch)
labels = model.prepare_labels(**batch)
# stack results of all batches per prediction head
for head_num, head in enumerate(model.prediction_heads):
loss_all[head_num] += np.sum(_to_numpy(losses_per_head[head_num]))
preds_all[head_num] += list(_to_numpy(preds[head_num]))
label_all[head_num] += list(_to_numpy(labels[head_num]))
if head.model_type == "span_classification":
ids_all[head_num] += list(_to_numpy(batch["id"]))
passage_start_t_all[head_num] += list(_to_numpy(batch["passage_start_t"]))
if calibrate_conf_scores:
logits_all[head_num] += list(_to_numpy(logits))
# Evaluate per prediction head
all_results = []
for head_num, head in enumerate(model.prediction_heads):
if head.model_type == "span_classification" and calibrate_conf_scores:
temperature_previous = head.temperature_for_confidence.item()
logger.info(f"temperature used for confidence scores before calibration: {temperature_previous}")
head.calibrate_conf(logits_all[head_num], label_all[head_num])
temperature_current = head.temperature_for_confidence.item()
logger.info(f"temperature used for confidence scores after calibration: {temperature_current}")
temperature_change = (abs(temperature_current - temperature_previous) / temperature_previous) * 100.0
if temperature_change > 50:
logger.warning(
f"temperature used for calibration of confidence scores changed by more than {temperature_change} percent"
)
if hasattr(head, "aggregate_preds"):
# Needed to convert NQ ids from np arrays to strings
ids_all_str = [x.astype(str) for x in ids_all[head_num]]
ids_all_list = [list(x) for x in ids_all_str]
head_ids = ["-".join(x) for x in ids_all_list]
preds_all[head_num], label_all[head_num] = head.aggregate_preds(
preds=preds_all[head_num],
labels=label_all[head_num],
passage_start_t=passage_start_t_all[head_num],
ids=head_ids,
)
result = {"loss": loss_all[head_num] / len(self.data_loader.dataset), "task_name": head.task_name}
result.update(compute_metrics(metric=head.metric, preds=preds_all[head_num], labels=label_all[head_num]))
# Select type of report depending on prediction head output type
if self.report:
try:
result["report"] = compute_report_metrics(head, preds_all[head_num], label_all[head_num])
except:
logger.error(
f"Couldn't create eval report for head {head_num} with following preds and labels:"
f"\n Preds: {preds_all[head_num]} \n Labels: {label_all[head_num]}"
)
result["report"] = "Error"
if return_preds_and_labels:
result["preds"] = preds_all[head_num]
result["labels"] = label_all[head_num]
all_results.append(result)
return all_results
@staticmethod
def log_results(
results: List[Any],
dataset_name: str,
steps: int,
logging: bool = True,
print: bool = True,
num_fold: Optional[int] = None,
):
# Print a header
header = "\n\n"
header += BUSH_SEP + "\n"
header += "***************************************************\n"
if num_fold:
header += (
f"***** EVALUATION | FOLD: {num_fold} | {dataset_name.upper()} SET | AFTER {steps} BATCHES *****\n"
)
else:
header += f"***** EVALUATION | {dataset_name.upper()} SET | AFTER {steps} BATCHES *****\n"
header += "***************************************************\n"
header += BUSH_SEP + "\n"
logger.info(header)
for head_num, head in enumerate(results):
logger.info("\n _________ {} _________".format(head["task_name"]))
for metric_name, metric_val in head.items():
# log with experiment tracking framework (e.g. Mlflow)
if logging:
if not metric_name in ["preds", "labels"] and not metric_name.startswith("_"):
if isinstance(metric_val, numbers.Number):
tracker.track_metrics(
metrics={f"{dataset_name}_{metric_name}_{head['task_name']}": metric_val}, step=steps
)
# print via standard python logger
if print:
if metric_name == "report":
if isinstance(metric_val, str) and len(metric_val) > 8000:
metric_val = metric_val[:7500] + "\n ............................. \n" + metric_val[-500:]
logger.info("{}: \n {}".format(metric_name, metric_val))
else:
if not metric_name in ["preds", "labels"] and not metric_name.startswith("_"):
logger.info("{}: {}".format(metric_name, metric_val))
def _to_numpy(container):
try:
return container.cpu().numpy()
except AttributeError:
return container