haystack/tutorials/Tutorial15_TableQA.py
Sara Zan ea3abd305b
Fix a few details of some tutorials (#1733)
* Make Tutorial10 use print instead of logs and fix a typo in Tutoria15

* Add a type check in 'print_answers'

* Add same checks to print_documents and print_questions

* Make RAGenerator return Answers instead of dictionaries

* Fix RAGenerator tests

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-11-12 16:44:28 +01:00

131 lines
5.4 KiB
Python

import json
import pandas as pd
from haystack.utils import launch_es, fetch_archive_from_http, print_answers
from haystack.document_stores import ElasticsearchDocumentStore
from haystack import Document, Pipeline
from haystack.nodes.retriever import TableTextRetriever
from haystack.nodes import TableReader
def tutorial15_tableqa():
# Recommended: Start Elasticsearch using Docker via the Haystack utility function
launch_es()
## Connect to Elasticsearch
# We want to use a small model producing 512-dimensional embeddings, so we need to set embedding_dim to 512
document_store = ElasticsearchDocumentStore(host="localhost",
username="",
password="",
index="document",
embedding_dim=512)
## Add Tables to DocumentStore
# Let's first fetch some tables that we want to query
# Here: 1000 tables from OTT-QA
doc_dir = "data"
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/ottqa_tables_sample.json.zip"
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
# Add the tables to the DocumentStore
def read_ottqa_tables(filename):
processed_tables = []
with open(filename) as tables:
tables = json.load(tables)
for key, table in tables.items():
current_columns = table["header"]
current_rows = table["data"]
current_df = pd.DataFrame(columns=current_columns, data=current_rows)
current_doc_title = table["title"]
current_section_title = table["section_title"]
document = Document(
content=current_df,
content_type="table",
meta={"title": current_doc_title, "section_title": current_section_title},
id=key
)
processed_tables.append(document)
return processed_tables
tables = read_ottqa_tables("data/ottqa_tables_sample.json")
document_store.write_documents(tables, index="document")
### Retriever
# Retrievers help narrowing down the scope for the Reader to a subset of tables where a given question could be answered.
# They use some simple but fast algorithm.
#
# **Here:** We use the TableTextRetriever capable of retrieving relevant content among a database
# of texts and tables using dense embeddings.
retriever = TableTextRetriever(
document_store=document_store,
query_embedding_model="deepset/bert-small-mm_retrieval-question_encoder",
passage_embedding_model="deepset/bert-small-mm_retrieval-passage_encoder",
table_embedding_model="deepset/bert-small-mm_retrieval-table_encoder",
embed_meta_fields=["title", "section_title"]
)
# Add table embeddings to the tables in DocumentStore
document_store.update_embeddings(retriever=retriever)
## Alternative: ElasticsearchRetriever
#from haystack.nodes.retriever import ElasticsearchRetriever
#retriever = ElasticsearchRetriever(document_store=document_store)
# Try the Retriever
from haystack.utils import print_documents
retrieved_tables = retriever.retrieve("How many twin buildings are under construction?", top_k=5)
# Get highest scored table
print(retrieved_tables[0].content)
### Reader
# The TableReader is based on TaPas, a transformer-based language model capable of grasping the two-dimensional structure of a table.
# It scans the tables returned by the retriever and extracts the anser.
# The available TableReader models can be found [here](https://huggingface.co/models?pipeline_tag=table-question-answering&sort=downloads).
#
# **Notice**: The TableReader will return an answer for each table, even if the query cannot be answered by the table.
# Furthermore, the confidence scores are not useful as of now, given that they will *always* be very high (i.e. 1 or close to 1).
reader = TableReader(model_name_or_path="google/tapas-base-finetuned-wtq", max_seq_len=512)
# Try the TableReader on one Table (highest-scored retrieved table)
table_doc = document_store.get_document_by_id("List_of_tallest_twin_buildings_and_structures_in_the_world_1")
print(table_doc.content)
prediction = reader.predict(query="How many twin buildings are under construction?", documents=[table_doc])
print_answers(prediction, details="minimum")
### Pipeline
# The Retriever and the Reader can be sticked together to a pipeline in order to first retrieve relevant tables
# and then extract the answer.
#
# **Notice**: Given that the `TableReader` does not provide useful confidence scores and returns an answer
# for each of the tables, the sorting of the answers might be not helpful.
table_qa_pipeline = Pipeline()
table_qa_pipeline.add_node(component=retriever, name="TableTextRetriever", inputs=["Query"])
table_qa_pipeline.add_node(component=reader, name="TableReader", inputs=["TableTextRetriever"])
prediction = table_qa_pipeline.run("How many twin buildings are under construction?")
print_answers(prediction, details="minimum")
if __name__ == "__main__":
tutorial15_tableqa()
# This Haystack script was made with love by deepset in Berlin, Germany
# Haystack: https://github.com/deepset-ai/haystack
# deepset: https://deepset.ai/