mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-21 07:51:40 +00:00

* Add FormRecognizerConverter * Change signature of convert method + change return type of all converters * Adapt preprocessing util to new return type of converters * Parametrize number of lines used for surrounding context of table * Change name from FormRecognizerConverter to AzureConverter * Set version of azure-ai-formrecognizer package * Change tutorial 8 based on new return type of converters * Add tests * Add latest docstring and tutorial changes * Fix typo Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
520 lines
16 KiB
Plaintext
520 lines
16 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# Preprocessing\n",
|
|
"\n",
|
|
"[](https://colab.research.google.com/github/deepset-ai/haystack/blob/master/tutorials/Tutorial8_Preprocessing.ipynb)\n",
|
|
"\n",
|
|
"Haystack includes a suite of tools to extract text from different file types, normalize white space\n",
|
|
"and split text into smaller pieces to optimize retrieval.\n",
|
|
"These data preprocessing steps can have a big impact on the systems performance and effective handling of data is key to getting the most out of Haystack."
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Ultimately, Haystack expects data to be provided as a list documents in the following dictionary format:\n",
|
|
"``` python\n",
|
|
"docs = [\n",
|
|
" {\n",
|
|
" 'content': DOCUMENT_TEXT_HERE,\n",
|
|
" 'meta': {'name': DOCUMENT_NAME, ...}\n",
|
|
" }, ...\n",
|
|
"]\n",
|
|
"```"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"This tutorial will show you all the tools that Haystack provides to help you cast your data into this format."
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 26,
|
|
"source": [
|
|
"# Let's start by installing Haystack\n",
|
|
"\n",
|
|
"# Install the latest release of Haystack in your own environment\n",
|
|
"#! pip install farm-haystack\n",
|
|
"\n",
|
|
"# Install the latest master of Haystack\n",
|
|
"!pip install grpcio-tools==1.34.1\n",
|
|
"!pip install git+https://github.com/deepset-ai/haystack.git\n",
|
|
"!wget --no-check-certificate https://dl.xpdfreader.com/xpdf-tools-linux-4.03.tar.gz\n",
|
|
"!tar -xvf xpdf-tools-linux-4.03.tar.gz && sudo cp xpdf-tools-linux-4.03/bin64/pdftotext /usr/local/bin\n",
|
|
"\n",
|
|
"# If you run this notebook on Google Colab, you might need to\n",
|
|
"# restart the runtime after installing haystack."
|
|
],
|
|
"outputs": [],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"source": [
|
|
"# Here are the imports we need\n",
|
|
"from haystack.nodes import TextConverter, PDFToTextConverter, DocxToTextConverter, PreProcessor\n",
|
|
"from haystack.utils import convert_files_to_dicts, fetch_archive_from_http"
|
|
],
|
|
"outputs": [
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stderr",
|
|
"text": [
|
|
"01/06/2021 14:49:14 - INFO - faiss - Loading faiss with AVX2 support.\n",
|
|
"01/06/2021 14:49:14 - INFO - faiss - Loading faiss.\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 29,
|
|
"source": [
|
|
"# This fetches some sample files to work with\n",
|
|
"\n",
|
|
"doc_dir = \"data/preprocessing_tutorial\"\n",
|
|
"s3_url = \"https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/preprocessing_tutorial.zip\"\n",
|
|
"fetch_archive_from_http(url=s3_url, output_dir=doc_dir)"
|
|
],
|
|
"outputs": [
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stderr",
|
|
"text": [
|
|
"01/05/2021 12:02:30 - INFO - haystack.preprocessor.utils - Fetching from https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/preprocessing_tutorial.zip to `data/preprocessing_tutorial`\n",
|
|
"100%|██████████| 595119/595119 [00:00<00:00, 5299765.39B/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"output_type": "execute_result",
|
|
"data": {
|
|
"text/plain": [
|
|
"True"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"execution_count": 29
|
|
}
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Converters\n",
|
|
"\n",
|
|
"Haystack's converter classes are designed to help you turn files on your computer into the documents\n",
|
|
"that can be processed by the Haystack pipeline.\n",
|
|
"There are file converters for txt, pdf, docx files as well as a converter that is powered by Apache Tika.\n",
|
|
"The parameter `valid_langugages` does not convert files to the target language, but checks if the conversion worked as expected.\n",
|
|
"For converting PDFs, try changing the encoding to UTF-8 if the conversion isn't great."
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"source": [
|
|
"# Here are some examples of how you would use file converters\n",
|
|
"\n",
|
|
"converter = TextConverter(remove_numeric_tables=True, valid_languages=[\"en\"])\n",
|
|
"doc_txt = converter.convert(file_path=\"data/preprocessing_tutorial/classics.txt\", meta=None)[0]\n",
|
|
"\n",
|
|
"converter = PDFToTextConverter(remove_numeric_tables=True, valid_languages=[\"en\"])\n",
|
|
"doc_pdf = converter.convert(file_path=\"data/preprocessing_tutorial/bert.pdf\", meta=None)[0]\n",
|
|
"\n",
|
|
"converter = DocxToTextConverter(remove_numeric_tables=False, valid_languages=[\"en\"])\n",
|
|
"doc_docx = converter.convert(file_path=\"data/preprocessing_tutorial/heavy_metal.docx\", meta=None)[0]\n"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"source": [
|
|
"# Haystack also has a convenience function that will automatically apply the right converter to each file in a directory.\n",
|
|
"\n",
|
|
"all_docs = convert_files_to_dicts(dir_path=\"data/preprocessing_tutorial\")"
|
|
],
|
|
"outputs": [
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stderr",
|
|
"text": [
|
|
"01/06/2021 14:51:06 - INFO - haystack.preprocessor.utils - Converting data/preprocessing_tutorial/heavy_metal.docx\n",
|
|
"01/06/2021 14:51:06 - INFO - haystack.preprocessor.utils - Converting data/preprocessing_tutorial/bert.pdf\n",
|
|
"01/06/2021 14:51:07 - INFO - haystack.preprocessor.utils - Converting data/preprocessing_tutorial/classics.txt\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## PreProcessor\n",
|
|
"\n",
|
|
"The PreProcessor class is designed to help you clean text and split text into sensible units.\n",
|
|
"File splitting can have a very significant impact on the system's performance and is absolutely mandatory for Dense Passage Retrieval models.\n",
|
|
"In general, we recommend you split the text from your files into small documents of around 100 words for dense retrieval methods\n",
|
|
"and no more than 10,000 words for sparse methods.\n",
|
|
"Have a look at the [Preprocessing](https://haystack.deepset.ai/docs/latest/preprocessingmd)\n",
|
|
"and [Optimization](https://haystack.deepset.ai/docs/latest/optimizationmd) pages on our website for more details."
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"source": [
|
|
"# This is a default usage of the PreProcessor.\n",
|
|
"# Here, it performs cleaning of consecutive whitespaces\n",
|
|
"# and splits a single large document into smaller documents.\n",
|
|
"# Each document is up to 1000 words long and document breaks cannot fall in the middle of sentences\n",
|
|
"# Note how the single document passed into the document gets split into 5 smaller documents\n",
|
|
"\n",
|
|
"preprocessor = PreProcessor(\n",
|
|
" clean_empty_lines=True,\n",
|
|
" clean_whitespace=True,\n",
|
|
" clean_header_footer=False,\n",
|
|
" split_by=\"word\",\n",
|
|
" split_length=100,\n",
|
|
" split_respect_sentence_boundary=True\n",
|
|
")\n",
|
|
"docs_default = preprocessor.process(doc_txt)\n",
|
|
"print(f\"n_docs_input: 1\\nn_docs_output: {len(docs_default)}\")"
|
|
],
|
|
"outputs": [
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stdout",
|
|
"text": [
|
|
"n_docs_input: 1\n",
|
|
"n_docs_output: 51\n"
|
|
]
|
|
},
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stderr",
|
|
"text": [
|
|
"[nltk_data] Downloading package punkt to /home/branden/nltk_data...\n",
|
|
"[nltk_data] Package punkt is already up-to-date!\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Cleaning\n",
|
|
"\n",
|
|
"- `clean_empty_lines` will normalize 3 or more consecutive empty lines to be just a two empty lines\n",
|
|
"- `clean_whitespace` will remove any whitespace at the beginning or end of each line in the text\n",
|
|
"- `clean_header_footer` will remove any long header or footer texts that are repeated on each page"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Splitting\n",
|
|
"By default, the PreProcessor will respect sentence boundaries, meaning that documents will not start or end\n",
|
|
"midway through a sentence.\n",
|
|
"This will help reduce the possibility of answer phrases being split between two documents.\n",
|
|
"This feature can be turned off by setting `split_respect_sentence_boundary=False`."
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"source": [
|
|
"# Not respecting sentence boundary vs respecting sentence boundary\n",
|
|
"\n",
|
|
"preprocessor_nrsb = PreProcessor(split_respect_sentence_boundary=False)\n",
|
|
"docs_nrsb = preprocessor_nrsb.process(doc_txt)\n",
|
|
"\n",
|
|
"print(\"RESPECTING SENTENCE BOUNDARY\")\n",
|
|
"end_text = docs_default[0][\"content\"][-50:]\n",
|
|
"print(\"End of document: \\\"...\" + end_text + \"\\\"\")\n",
|
|
"print()\n",
|
|
"print(\"NOT RESPECTING SENTENCE BOUNDARY\")\n",
|
|
"end_text_nrsb = docs_nrsb[0][\"content\"][-50:]\n",
|
|
"print(\"End of document: \\\"...\" + end_text_nrsb + \"\\\"\")"
|
|
],
|
|
"outputs": [
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stdout",
|
|
"text": [
|
|
"RESPECTING SENTENCE BOUNDARY\n",
|
|
"End of document: \"...cornerstone of a typical elite European education.\"\n",
|
|
"\n",
|
|
"NOT RESPECTING SENTENCE BOUNDARY\n",
|
|
"End of document: \"...on. In England, for instance, Oxford and Cambridge\"\n"
|
|
]
|
|
},
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stderr",
|
|
"text": [
|
|
"[nltk_data] Downloading package punkt to /home/branden/nltk_data...\n",
|
|
"[nltk_data] Package punkt is already up-to-date!\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"A commonly used strategy to split long documents, especially in the field of Question Answering,\n",
|
|
"is the sliding window approach. If `split_length=10` and `split_overlap=3`, your documents will look like this:\n",
|
|
"\n",
|
|
"- doc1 = words[0:10]\n",
|
|
"- doc2 = words[7:17]\n",
|
|
"- doc3 = words[14:24]\n",
|
|
"- ...\n",
|
|
"\n",
|
|
"You can use this strategy by following the code below."
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"source": [
|
|
"# Sliding window approach\n",
|
|
"\n",
|
|
"preprocessor_sliding_window = PreProcessor(\n",
|
|
" split_overlap=3,\n",
|
|
" split_length=10,\n",
|
|
" split_respect_sentence_boundary=False\n",
|
|
")\n",
|
|
"docs_sliding_window = preprocessor_sliding_window.process(doc_txt)\n",
|
|
"\n",
|
|
"doc1 = docs_sliding_window[0][\"content\"][:200]\n",
|
|
"doc2 = docs_sliding_window[1][\"content\"][:100]\n",
|
|
"doc3 = docs_sliding_window[2][\"content\"][:100]\n",
|
|
"\n",
|
|
"print(\"Document 1: \\\"\" + doc1 + \"...\\\"\")\n",
|
|
"print(\"Document 2: \\\"\" + doc2 + \"...\\\"\")\n",
|
|
"print(\"Document 3: \\\"\" + doc3 + \"...\\\"\")"
|
|
],
|
|
"outputs": [
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stdout",
|
|
"text": [
|
|
"Document 1: \"Classics or classical studies is the study of classical antiquity,...\"\n",
|
|
"Document 2: \"of classical antiquity, and in the Western world traditionally refers...\"\n",
|
|
"Document 3: \"world traditionally refers to the study of Classical Greek and...\"\n"
|
|
]
|
|
},
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stderr",
|
|
"text": [
|
|
"[nltk_data] Downloading package punkt to /home/branden/nltk_data...\n",
|
|
"[nltk_data] Package punkt is already up-to-date!\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Bringing it all together"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"source": [
|
|
"all_docs = convert_files_to_dicts(dir_path=\"data/preprocessing_tutorial\")\n",
|
|
"preprocessor = PreProcessor(\n",
|
|
" clean_empty_lines=True,\n",
|
|
" clean_whitespace=True,\n",
|
|
" clean_header_footer=False,\n",
|
|
" split_by=\"word\",\n",
|
|
" split_length=100,\n",
|
|
" split_respect_sentence_boundary=True\n",
|
|
")\n",
|
|
"docs = preprocessor.process(all_docs)\n",
|
|
"\n",
|
|
"print(f\"n_files_input: {len(all_docs)}\\nn_docs_output: {len(docs)}\")"
|
|
],
|
|
"outputs": [
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stderr",
|
|
"text": [
|
|
"01/06/2021 14:56:12 - INFO - haystack.preprocessor.utils - Converting data/preprocessing_tutorial/heavy_metal.docx\n",
|
|
"01/06/2021 14:56:12 - INFO - haystack.preprocessor.utils - Converting data/preprocessing_tutorial/bert.pdf\n",
|
|
"01/06/2021 14:56:12 - INFO - haystack.preprocessor.utils - Converting data/preprocessing_tutorial/classics.txt\n",
|
|
"[nltk_data] Downloading package punkt to /home/branden/nltk_data...\n",
|
|
"[nltk_data] Package punkt is already up-to-date!\n"
|
|
]
|
|
},
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stdout",
|
|
"text": [
|
|
"n_files_input: 3\n",
|
|
"n_docs_output: 150\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## About us\n",
|
|
"\n",
|
|
"This [Haystack](https://github.com/deepset-ai/haystack/) notebook was made with love by [deepset](https://deepset.ai/) in Berlin, Germany\n",
|
|
"\n",
|
|
"We bring NLP to the industry via open source! \n",
|
|
"Our focus: Industry specific language models & large scale QA systems. \n",
|
|
" \n",
|
|
"Some of our other work: \n",
|
|
"- [German BERT](https://deepset.ai/german-bert)\n",
|
|
"- [GermanQuAD and GermanDPR](https://deepset.ai/germanquad)\n",
|
|
"- [FARM](https://github.com/deepset-ai/FARM)\n",
|
|
"\n",
|
|
"Get in touch:\n",
|
|
"[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)\n",
|
|
"\n",
|
|
"By the way: [we're hiring!](https://www.deepset.ai/jobs)\n"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
} |