haystack/haystack/nodes/prompt/invocation_layer/hugging_face_inference.py
ZanSara 49e037a055
fix: rename requests.py into requests_utils.py (#5099)
* requests.py -> requests_utils.py

* fix tests

* reimport requrests

* fix more tests

* review feedback
2023-06-12 12:40:21 +02:00

296 lines
13 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import os
from typing import Optional, Dict, Union, List, Any, Callable
import logging
import requests
import sseclient
from transformers.pipelines import get_task
from haystack.environment import HAYSTACK_REMOTE_API_TIMEOUT_SEC, HAYSTACK_REMOTE_API_MAX_RETRIES
from haystack.errors import (
HuggingFaceInferenceLimitError,
HuggingFaceInferenceUnauthorizedError,
HuggingFaceInferenceError,
)
from haystack.nodes.prompt.invocation_layer import (
PromptModelInvocationLayer,
TokenStreamingHandler,
DefaultTokenStreamingHandler,
)
from haystack.nodes.prompt.invocation_layer.handlers import DefaultPromptHandler
from haystack.utils.requests_utils import request_with_retry
logger = logging.getLogger(__name__)
HF_TIMEOUT = float(os.environ.get(HAYSTACK_REMOTE_API_TIMEOUT_SEC, 30))
HF_RETRIES = int(os.environ.get(HAYSTACK_REMOTE_API_MAX_RETRIES, 5))
class HFInferenceEndpointInvocationLayer(PromptModelInvocationLayer):
"""
A PromptModelInvocationLayer that invokes Hugging Face remote Inference Endpoint and API Inference to prompt the model.
For more details see Hugging Face Inference API [documentation](https://huggingface.co/docs/api-inference/index)
and Hugging Face Inference Endpoints [documentation](https://huggingface.co/inference-endpoints)
The Inference API is free to use, and rate limited. If you need an inference solution for production, you can use
Inference Endpoints service.
See documentation for more details: https://huggingface.co/docs/inference-endpoints
"""
def __init__(self, api_key: str, model_name_or_path: str, max_length: Optional[int] = 100, **kwargs):
"""
Creates an instance of HFInferenceEndpointInvocationLayer
:param model_name_or_path: can be either:
a) Hugging Face Inference model name (i.e. google/flan-t5-xxl)
b) Hugging Face Inference Endpoint URL (i.e. e.g. https://<your-unique-deployment-id>.us-east-1.aws.endpoints.huggingface.cloud)
:param max_length: The maximum length of the output text.
:param api_key: The Hugging Face API token. Youll need to provide your user token which can
be found in your Hugging Face account [settings](https://huggingface.co/settings/tokens)
"""
super().__init__(model_name_or_path)
self.prompt_preprocessors: Dict[str, Callable] = {}
valid_api_key = isinstance(api_key, str) and api_key
if not valid_api_key:
raise ValueError(
f"api_key {api_key} must be a valid Hugging Face token. "
f"Your token is available in your Hugging Face settings page."
)
self.api_key = api_key
self.max_length = max_length
# See https://huggingface.co/docs/api-inference/detailed_parameters#text-generation-task
# for a list of supported parameters
self.model_input_kwargs = {
key: kwargs[key]
for key in [
"best_of",
"details",
"do_sample",
"max_new_tokens",
"max_time",
"model_max_length",
"num_return_sequences",
"repetition_penalty",
"return_full_text",
"seed",
"stream",
"stream_handler",
"temperature",
"top_k",
"top_p",
"truncate",
"typical_p",
"watermark",
]
if key in kwargs
}
self.prompt_preprocessors["oasst"] = lambda prompt: f"<|prompter|>{prompt}<|endoftext|><|assistant|>"
# we pop the model_max_length from the model_input_kwargs as it is not sent to the model
# but used to truncate the prompt if needed
model_max_length = self.model_input_kwargs.pop("model_max_length", 1024)
if HFInferenceEndpointInvocationLayer.is_inference_endpoint(model_name_or_path):
# as we are using the deployed HF inference endpoint, we don't know the model name
# we'll use gpt2 BPE tokenizer for prompt length calculation
self.prompt_handler = DefaultPromptHandler(
model_name_or_path="gpt2", model_max_length=model_max_length, max_length=self.max_length or 100
)
else:
self.prompt_handler = DefaultPromptHandler(
model_name_or_path=model_name_or_path,
model_max_length=model_max_length,
max_length=self.max_length or 100,
)
def preprocess_prompt(self, prompt: str):
for key, prompt_preprocessor in self.prompt_preprocessors.items():
if key in self.model_name_or_path:
return prompt_preprocessor(prompt)
return prompt
@property
def url(self) -> str:
if HFInferenceEndpointInvocationLayer.is_inference_endpoint(self.model_name_or_path):
# Inference Endpoint URL
# i.e. https://o3x2xh3o4m47mxny.us-east-1.aws.endpoints.huggingface.cloud
url = self.model_name_or_path
else:
url = f"https://api-inference.huggingface.co/models/{self.model_name_or_path}"
return url
@property
def headers(self) -> Dict[str, str]:
return {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
def invoke(self, *args, **kwargs):
"""
Invokes a prompt on the model. It takes in a prompt and returns a list of responses using a REST invocation.
:return: The responses are being returned.
"""
prompt = kwargs.get("prompt")
if not prompt:
raise ValueError(
f"No prompt provided. Model {self.model_name_or_path} requires prompt."
f"Make sure to provide prompt in kwargs."
)
prompt = self.preprocess_prompt(prompt)
stop_words = kwargs.pop("stop_words", None) or []
kwargs_with_defaults = self.model_input_kwargs
if "max_new_tokens" not in kwargs_with_defaults:
kwargs_with_defaults["max_new_tokens"] = self.max_length
kwargs_with_defaults.update(kwargs)
# either stream is True (will use default handler) or stream_handler is provided
stream = (
kwargs_with_defaults.get("stream", False) or kwargs_with_defaults.get("stream_handler", None) is not None
)
# see https://huggingface.co/docs/api-inference/detailed_parameters#text-generation-task
params = {
"best_of": kwargs_with_defaults.get("best_of", None),
"details": kwargs_with_defaults.get("details", True),
"do_sample": kwargs_with_defaults.get("do_sample", False),
"max_new_tokens": kwargs_with_defaults.get("max_new_tokens", self.max_length),
"max_time": kwargs_with_defaults.get("max_time", None),
"num_return_sequences": kwargs_with_defaults.get("num_return_sequences", None),
"repetition_penalty": kwargs_with_defaults.get("repetition_penalty", None),
"return_full_text": kwargs_with_defaults.get("return_full_text", False),
"seed": kwargs_with_defaults.get("seed", None),
"stop": kwargs_with_defaults.get("stop", stop_words),
"temperature": kwargs_with_defaults.get("temperature", None),
"top_k": kwargs_with_defaults.get("top_k", None),
"top_p": kwargs_with_defaults.get("top_p", None),
"truncate": kwargs_with_defaults.get("truncate", None),
"typical_p": kwargs_with_defaults.get("typical_p", None),
"watermark": kwargs_with_defaults.get("watermark", False),
}
response: requests.Response = self._post(
data={"inputs": prompt, "parameters": params, "stream": stream}, stream=stream
)
if stream:
handler: TokenStreamingHandler = kwargs_with_defaults.pop("stream_handler", DefaultTokenStreamingHandler())
generated_texts = self._process_streaming_response(response, handler, stop_words)
else:
output = json.loads(response.text)
generated_texts = [o["generated_text"] for o in output if "generated_text" in o]
return generated_texts
def _process_streaming_response(
self, response: requests.Response, stream_handler: TokenStreamingHandler, stop_words: List[str]
) -> List[str]:
"""
Stream the response and invoke the stream_handler on each token.
:param response: The response object from the server.
:param stream_handler: The handler to invoke on each token.
:param stop_words: The stop words to ignore.
"""
client = sseclient.SSEClient(response)
tokens: List[str] = []
try:
for event in client.events():
if event.data != TokenStreamingHandler.DONE_MARKER:
event_data = json.loads(event.data)
token: Optional[str] = self._extract_token(event_data)
# if valid token and not a stop words (we don't want to return stop words)
if token and token.strip() not in stop_words:
tokens.append(stream_handler(token, event_data=event_data))
finally:
client.close()
return ["".join(tokens)] # return a list of strings just like non-streaming
def _extract_token(self, event_data: Dict[str, Any]) -> Optional[str]:
"""
Extract the token from the event data. If the token is a special token, return None.
param event_data: Event data from the streaming response.
"""
# extract token from event data and only consider non-special tokens
return event_data["token"]["text"] if not event_data["token"]["special"] else None
def _post(
self,
data: Dict[str, Any],
stream: bool = False,
attempts: int = HF_RETRIES,
status_codes_to_retry: Optional[List[int]] = None,
timeout: float = HF_TIMEOUT,
) -> requests.Response:
"""
Post data to the HF inference model. It takes in a prompt and returns a list of responses using a REST invocation.
:param data: The data to be sent to the model.
:param stream: Whether to stream the response.
:param attempts: The number of attempts to make.
:param status_codes_to_retry: The status codes to retry on.
:param timeout: The timeout for the request.
:return: The responses are being returned.
"""
response: requests.Response
if status_codes_to_retry is None:
status_codes_to_retry = [429]
try:
response = request_with_retry(
method="POST",
status_codes_to_retry=status_codes_to_retry,
attempts=attempts,
url=self.url,
headers=self.headers,
json=data,
timeout=timeout,
stream=stream,
)
except requests.HTTPError as err:
res = err.response
if res.status_code == 429:
raise HuggingFaceInferenceLimitError(f"API rate limit exceeded: {res.text}")
if res.status_code == 401:
raise HuggingFaceInferenceUnauthorizedError(f"API key is invalid: {res.text}")
raise HuggingFaceInferenceError(
f"HuggingFace Inference returned an error.\nStatus code: {res.status_code}\nResponse body: {res.text}",
status_code=res.status_code,
)
return response
def _ensure_token_limit(self, prompt: Union[str, List[Dict[str, str]]]) -> Union[str, List[Dict[str, str]]]:
# the prompt for this model will be of the type str
resize_info = self.prompt_handler(prompt) # type: ignore
if resize_info["prompt_length"] != resize_info["new_prompt_length"]:
logger.warning(
"The prompt has been truncated from %s tokens to %s tokens so that the prompt length and "
"answer length (%s tokens) fit within the max token limit (%s tokens). "
"Shorten the prompt to prevent it from being cut off.",
resize_info["prompt_length"],
max(0, resize_info["model_max_length"] - resize_info["max_length"]), # type: ignore
resize_info["max_length"],
resize_info["model_max_length"],
)
return str(resize_info["resized_prompt"])
@staticmethod
def is_inference_endpoint(model_name_or_path: str) -> bool:
return model_name_or_path is not None and all(
token in model_name_or_path for token in ["https://", "endpoints"]
)
@classmethod
def supports(cls, model_name_or_path: str, **kwargs) -> bool:
if cls.is_inference_endpoint(model_name_or_path):
return True
else:
# Check if the model is an HF inference API
task_name: Optional[str] = None
is_inference_api = False
try:
task_name = get_task(model_name_or_path, use_auth_token=kwargs.get("use_auth_token", None))
is_inference_api = "api_key" in kwargs
except RuntimeError:
# This will fail for all non-HF models
return False
return is_inference_api and task_name in ["text2text-generation", "text-generation"]