mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-29 11:50:34 +00:00

* first draft / notes on new primitives * wip label / feedback refactor * rename doc.text -> doc.content. add doc.content_type * add datatype for content * remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field * update converters for . Add warning for empty * renam label.question -> label.query. Allow sorting of Answers. * WIP primitives * update ui/reader for new Answer format * Improve Label. First refactoring of MultiLabel. Adjust eval code * fixed workflow conflict with introducing new one (#1472) * Add latest docstring and tutorial changes * make add_eval_data() work again * fix reader formats. WIP fix _extract_docs_and_labels_from_dict * fix test reader * Add latest docstring and tutorial changes * fix another test case for reader * fix mypy in farm reader.eval() * fix mypy in farm reader.eval() * WIP ORM refactor * Add latest docstring and tutorial changes * fix mypy weaviate * make label and multilabel dataclasses * bump mypy env in CI to python 3.8 * WIP refactor Label ORM * WIP refactor Label ORM * simplify tests for individual doc stores * WIP refactoring markers of tests * test alternative approach for tests with existing parametrization * WIP refactor ORMs * fix skip logic of already parametrized tests * fix weaviate behaviour in tests - not parametrizing it in our general test cases. * Add latest docstring and tutorial changes * fix some tests * remove sql from document_store_types * fix markers for generator and pipeline test * remove inmemory marker * remove unneeded elasticsearch markers * add dataclasses-json dependency. adjust ORM to just store JSON repr * ignore type as dataclasses_json seems to miss functionality here * update readme and contributing.md * update contributing * adjust example * fix duplicate doc handling for custom index * Add latest docstring and tutorial changes * fix some ORM issues. fix get_all_labels_aggregated. * update drop flags where get_all_labels_aggregated() was used before * Add latest docstring and tutorial changes * add to_json(). add + fix tests * fix no_answer handling in label / multilabel * fix duplicate docs in memory doc store. change primary key for sql doc table * fix mypy issues * fix mypy issues * haystack/retriever/base.py * fix test_write_document_meta[elastic] * fix test_elasticsearch_custom_fields * fix test_labels[elastic] * fix crawler * fix converter * fix docx converter * fix preprocessor * fix test_utils * fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations * Add latest docstring and tutorial changes * fix crawler test. fix ocrconverter attribute * fix test_elasticsearch_custom_query * fix generator pipeline * fix ocr converter * fix ragenerator * Add latest docstring and tutorial changes * fix test_load_and_save_yaml for elasticsearch * fixes for pipeline tests * fix faq pipeline * fix pipeline tests * Add latest docstring and tutorial changes * fix weaviate * Add latest docstring and tutorial changes * trigger CI * satisfy mypy * Add latest docstring and tutorial changes * satisfy mypy * Add latest docstring and tutorial changes * trigger CI * fix question generation test * fix ray. fix Q-generation * fix translator test * satisfy mypy * wip refactor feedback rest api * fix rest api feedback endpoint * fix doc classifier * remove relation of Labels -> Docs in SQL ORM * fix faiss/milvus tests * fix doc classifier test * fix eval test * fixing eval issues * Add latest docstring and tutorial changes * fix mypy * WIP replace dataclasses-json with manual serialization * Add latest docstring and tutorial changes * revert to dataclass-json serialization for now. remove debug prints. * update docstrings * fix extractor. fix Answer Span init * fix api test * keep meta data of answers in reader.run() * fix meta handling * adress review feedback * Add latest docstring and tutorial changes * make document=None for open domain labels * add import * fix print utils * fix rest api * adress review feedback * Add latest docstring and tutorial changes * fix mypy Co-authored-by: Markus Paff <markuspaff.mp@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
700 lines
29 KiB
Python
700 lines
29 KiB
Python
import numpy as np
|
|
import pytest
|
|
from elasticsearch import Elasticsearch
|
|
|
|
from conftest import get_document_store
|
|
from haystack import Document, Label, Answer, Span
|
|
from haystack.document_store.elasticsearch import ElasticsearchDocumentStore
|
|
from haystack.document_store.faiss import FAISSDocumentStore
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
def test_init_elastic_client():
|
|
# defaults
|
|
_ = ElasticsearchDocumentStore()
|
|
|
|
# list of hosts + single port
|
|
_ = ElasticsearchDocumentStore(host=["localhost", "127.0.0.1"], port=9200)
|
|
|
|
# list of hosts + list of ports (wrong)
|
|
with pytest.raises(Exception):
|
|
_ = ElasticsearchDocumentStore(host=["localhost", "127.0.0.1"], port=[9200])
|
|
|
|
# list of hosts + list
|
|
_ = ElasticsearchDocumentStore(host=["localhost", "127.0.0.1"], port=[9200, 9200])
|
|
|
|
# only api_key
|
|
with pytest.raises(Exception):
|
|
_ = ElasticsearchDocumentStore(host=["localhost"], port=[9200], api_key="test")
|
|
|
|
# api_key + id
|
|
_ = ElasticsearchDocumentStore(host=["localhost"], port=[9200], api_key="test", api_key_id="test")
|
|
|
|
|
|
def test_write_with_duplicate_doc_ids(document_store):
|
|
documents = [
|
|
Document(
|
|
content="Doc1",
|
|
id_hash_keys=["key1"]
|
|
),
|
|
Document(
|
|
content="Doc2",
|
|
id_hash_keys=["key1"]
|
|
)
|
|
]
|
|
document_store.write_documents(documents, duplicate_documents="skip")
|
|
assert len(document_store.get_all_documents()) == 1
|
|
with pytest.raises(Exception):
|
|
document_store.write_documents(documents, duplicate_documents="fail")
|
|
|
|
|
|
def test_write_with_duplicate_doc_ids_custom_index(document_store):
|
|
documents = [
|
|
Document(
|
|
content="Doc1",
|
|
id_hash_keys=["key1"]
|
|
),
|
|
Document(
|
|
content="Doc2",
|
|
id_hash_keys=["key1"]
|
|
)
|
|
]
|
|
document_store.delete_documents(index="haystack_custom_test")
|
|
document_store.write_documents(documents, index="haystack_custom_test", duplicate_documents="skip")
|
|
with pytest.raises(Exception):
|
|
document_store.write_documents(documents, index="haystack_custom_test", duplicate_documents="fail")
|
|
|
|
# writing to the default, empty index should still work
|
|
document_store.write_documents(documents, duplicate_documents="fail")
|
|
|
|
def test_get_all_documents_without_filters(document_store_with_docs):
|
|
documents = document_store_with_docs.get_all_documents()
|
|
assert all(isinstance(d, Document) for d in documents)
|
|
assert len(documents) == 3
|
|
assert {d.meta["name"] for d in documents} == {"filename1", "filename2", "filename3"}
|
|
assert {d.meta["meta_field"] for d in documents} == {"test1", "test2", "test3"}
|
|
|
|
|
|
def test_get_all_document_filter_duplicate_text_value(document_store):
|
|
documents = [
|
|
Document(
|
|
content="Doc1",
|
|
meta={"f1": "0"},
|
|
id_hash_keys=["Doc1", "1"]
|
|
),
|
|
Document(
|
|
content="Doc1",
|
|
meta={"f1": "1", "meta_id": "0"},
|
|
id_hash_keys=["Doc1", "2"]
|
|
),
|
|
Document(
|
|
content="Doc2",
|
|
meta={"f3": "0"},
|
|
id_hash_keys=["Doc2", "3"]
|
|
)
|
|
]
|
|
document_store.write_documents(documents)
|
|
documents = document_store.get_all_documents(filters={"f1": ["1"]})
|
|
assert documents[0].content == "Doc1"
|
|
assert len(documents) == 1
|
|
assert {d.meta["meta_id"] for d in documents} == {"0"}
|
|
|
|
|
|
def test_get_all_documents_with_correct_filters(document_store_with_docs):
|
|
documents = document_store_with_docs.get_all_documents(filters={"meta_field": ["test2"]})
|
|
assert len(documents) == 1
|
|
assert documents[0].meta["name"] == "filename2"
|
|
|
|
documents = document_store_with_docs.get_all_documents(filters={"meta_field": ["test1", "test3"]})
|
|
assert len(documents) == 2
|
|
assert {d.meta["name"] for d in documents} == {"filename1", "filename3"}
|
|
assert {d.meta["meta_field"] for d in documents} == {"test1", "test3"}
|
|
|
|
|
|
def test_get_all_documents_with_correct_filters_legacy_sqlite(test_docs_xs):
|
|
document_store_with_docs = get_document_store("sql")
|
|
document_store_with_docs.write_documents(test_docs_xs)
|
|
|
|
document_store_with_docs.use_windowed_query = False
|
|
documents = document_store_with_docs.get_all_documents(filters={"meta_field": ["test2"]})
|
|
assert len(documents) == 1
|
|
assert documents[0].meta["name"] == "filename2"
|
|
|
|
documents = document_store_with_docs.get_all_documents(filters={"meta_field": ["test1", "test3"]})
|
|
assert len(documents) == 2
|
|
assert {d.meta["name"] for d in documents} == {"filename1", "filename3"}
|
|
assert {d.meta["meta_field"] for d in documents} == {"test1", "test3"}
|
|
|
|
|
|
def test_get_all_documents_with_incorrect_filter_name(document_store_with_docs):
|
|
documents = document_store_with_docs.get_all_documents(filters={"incorrect_meta_field": ["test2"]})
|
|
assert len(documents) == 0
|
|
|
|
|
|
def test_get_all_documents_with_incorrect_filter_value(document_store_with_docs):
|
|
documents = document_store_with_docs.get_all_documents(filters={"meta_field": ["incorrect_value"]})
|
|
assert len(documents) == 0
|
|
|
|
|
|
def test_get_documents_by_id(document_store_with_docs):
|
|
documents = document_store_with_docs.get_all_documents()
|
|
doc = document_store_with_docs.get_document_by_id(documents[0].id)
|
|
assert doc.id == documents[0].id
|
|
assert doc.content == documents[0].content
|
|
|
|
|
|
def test_get_document_count(document_store):
|
|
documents = [
|
|
{"content": "text1", "id": "1", "meta_field_for_count": "a"},
|
|
{"content": "text2", "id": "2", "meta_field_for_count": "b"},
|
|
{"content": "text3", "id": "3", "meta_field_for_count": "b"},
|
|
{"content": "text4", "id": "4", "meta_field_for_count": "b"},
|
|
]
|
|
document_store.write_documents(documents)
|
|
assert document_store.get_document_count() == 4
|
|
assert document_store.get_document_count(filters={"meta_field_for_count": ["a"]}) == 1
|
|
assert document_store.get_document_count(filters={"meta_field_for_count": ["b"]}) == 3
|
|
|
|
|
|
def test_get_all_documents_generator(document_store):
|
|
documents = [
|
|
{"content": "text1", "id": "1", "meta_field_for_count": "a"},
|
|
{"content": "text2", "id": "2", "meta_field_for_count": "b"},
|
|
{"content": "text3", "id": "3", "meta_field_for_count": "b"},
|
|
{"content": "text4", "id": "4", "meta_field_for_count": "b"},
|
|
{"content": "text5", "id": "5", "meta_field_for_count": "b"},
|
|
]
|
|
|
|
document_store.write_documents(documents)
|
|
assert len(list(document_store.get_all_documents_generator(batch_size=2))) == 5
|
|
|
|
|
|
@pytest.mark.parametrize("update_existing_documents", [True, False])
|
|
def test_update_existing_documents(document_store, update_existing_documents):
|
|
original_docs = [
|
|
{"content": "text1_orig", "id": "1", "meta_field_for_count": "a"},
|
|
]
|
|
|
|
updated_docs = [
|
|
{"content": "text1_new", "id": "1", "meta_field_for_count": "a"},
|
|
]
|
|
|
|
document_store.write_documents(original_docs)
|
|
assert document_store.get_document_count() == 1
|
|
|
|
if update_existing_documents:
|
|
document_store.write_documents(updated_docs, duplicate_documents="overwrite")
|
|
else:
|
|
with pytest.raises(Exception):
|
|
document_store.write_documents(updated_docs, duplicate_documents="fail")
|
|
|
|
stored_docs = document_store.get_all_documents()
|
|
assert len(stored_docs) == 1
|
|
if update_existing_documents:
|
|
assert stored_docs[0].content == updated_docs[0]["content"]
|
|
else:
|
|
assert stored_docs[0].content == original_docs[0]["content"]
|
|
|
|
|
|
def test_write_document_meta(document_store):
|
|
documents = [
|
|
{"content": "dict_without_meta", "id": "1"},
|
|
{"content": "dict_with_meta", "meta_field": "test2", "name": "filename2", "id": "2"},
|
|
Document(content="document_object_without_meta", id="3"),
|
|
Document(content="document_object_with_meta", meta={"meta_field": "test4", "name": "filename3"}, id="4"),
|
|
]
|
|
document_store.write_documents(documents)
|
|
documents_in_store = document_store.get_all_documents()
|
|
assert len(documents_in_store) == 4
|
|
|
|
assert not document_store.get_document_by_id("1").meta
|
|
assert document_store.get_document_by_id("2").meta["meta_field"] == "test2"
|
|
assert not document_store.get_document_by_id("3").meta
|
|
assert document_store.get_document_by_id("4").meta["meta_field"] == "test4"
|
|
|
|
|
|
def test_write_document_index(document_store):
|
|
documents = [
|
|
{"content": "text1", "id": "1"},
|
|
{"content": "text2", "id": "2"},
|
|
]
|
|
document_store.write_documents([documents[0]], index="haystack_test_1")
|
|
assert len(document_store.get_all_documents(index="haystack_test_1")) == 1
|
|
|
|
document_store.write_documents([documents[1]], index="haystack_test_2")
|
|
assert len(document_store.get_all_documents(index="haystack_test_2")) == 1
|
|
|
|
assert len(document_store.get_all_documents(index="haystack_test_1")) == 1
|
|
assert len(document_store.get_all_documents()) == 0
|
|
|
|
|
|
def test_document_with_embeddings(document_store):
|
|
documents = [
|
|
{"content": "text1", "id": "1", "embedding": np.random.rand(768).astype(np.float32)},
|
|
{"content": "text2", "id": "2", "embedding": np.random.rand(768).astype(np.float64)},
|
|
{"content": "text3", "id": "3", "embedding": np.random.rand(768).astype(np.float32).tolist()},
|
|
{"content": "text4", "id": "4", "embedding": np.random.rand(768).astype(np.float32)},
|
|
]
|
|
document_store.write_documents(documents, index="haystack_test_1")
|
|
assert len(document_store.get_all_documents(index="haystack_test_1")) == 4
|
|
|
|
documents_without_embedding = document_store.get_all_documents(index="haystack_test_1", return_embedding=False)
|
|
assert documents_without_embedding[0].embedding is None
|
|
|
|
documents_with_embedding = document_store.get_all_documents(index="haystack_test_1", return_embedding=True)
|
|
assert isinstance(documents_with_embedding[0].embedding, (list, np.ndarray))
|
|
|
|
|
|
@pytest.mark.parametrize("retriever", ["embedding"], indirect=True)
|
|
def test_update_embeddings(document_store, retriever):
|
|
documents = []
|
|
for i in range(6):
|
|
documents.append({"content": f"text_{i}", "id": str(i), "meta_field": f"value_{i}"})
|
|
documents.append({"content": "text_0", "id": "6", "meta_field": "value_0"})
|
|
|
|
document_store.write_documents(documents, index="haystack_test_1")
|
|
document_store.update_embeddings(retriever, index="haystack_test_1", batch_size=3)
|
|
documents = document_store.get_all_documents(index="haystack_test_1", return_embedding=True)
|
|
assert len(documents) == 7
|
|
for doc in documents:
|
|
assert type(doc.embedding) is np.ndarray
|
|
|
|
documents = document_store.get_all_documents(
|
|
index="haystack_test_1",
|
|
filters={"meta_field": ["value_0"]},
|
|
return_embedding=True,
|
|
)
|
|
assert len(documents) == 2
|
|
for doc in documents:
|
|
assert doc.meta["meta_field"] == "value_0"
|
|
np.testing.assert_array_almost_equal(documents[0].embedding, documents[1].embedding, decimal=4)
|
|
|
|
documents = document_store.get_all_documents(
|
|
index="haystack_test_1",
|
|
filters={"meta_field": ["value_0", "value_5"]},
|
|
return_embedding=True,
|
|
)
|
|
np.testing.assert_raises(
|
|
AssertionError,
|
|
np.testing.assert_array_equal,
|
|
documents[0].embedding,
|
|
documents[1].embedding
|
|
)
|
|
|
|
doc = {"content": "text_7", "id": "7", "meta_field": "value_7",
|
|
"embedding": retriever.embed_queries(texts=["a random string"])[0]}
|
|
document_store.write_documents([doc], index="haystack_test_1")
|
|
|
|
documents = []
|
|
for i in range(8, 11):
|
|
documents.append({"content": f"text_{i}", "id": str(i), "meta_field": f"value_{i}"})
|
|
document_store.write_documents(documents, index="haystack_test_1")
|
|
|
|
doc_before_update = document_store.get_all_documents(index="haystack_test_1", filters={"meta_field": ["value_7"]})[0]
|
|
embedding_before_update = doc_before_update.embedding
|
|
|
|
# test updating only documents without embeddings
|
|
document_store.update_embeddings(retriever, index="haystack_test_1", batch_size=3, update_existing_embeddings=False)
|
|
doc_after_update = document_store.get_all_documents(index="haystack_test_1", filters={"meta_field": ["value_7"]})[0]
|
|
embedding_after_update = doc_after_update.embedding
|
|
np.testing.assert_array_equal(embedding_before_update, embedding_after_update)
|
|
|
|
# test updating with filters
|
|
if isinstance(document_store, FAISSDocumentStore):
|
|
with pytest.raises(Exception):
|
|
document_store.update_embeddings(
|
|
retriever, index="haystack_test_1", update_existing_embeddings=True, filters={"meta_field": ["value"]}
|
|
)
|
|
else:
|
|
document_store.update_embeddings(
|
|
retriever, index="haystack_test_1", batch_size=3, filters={"meta_field": ["value_0", "value_1"]}
|
|
)
|
|
doc_after_update = document_store.get_all_documents(index="haystack_test_1", filters={"meta_field": ["value_7"]})[0]
|
|
embedding_after_update = doc_after_update.embedding
|
|
np.testing.assert_array_equal(embedding_before_update, embedding_after_update)
|
|
|
|
# test update all embeddings
|
|
document_store.update_embeddings(retriever, index="haystack_test_1", batch_size=3, update_existing_embeddings=True)
|
|
assert document_store.get_embedding_count(index="haystack_test_1") == 11
|
|
doc_after_update = document_store.get_all_documents(index="haystack_test_1", filters={"meta_field": ["value_7"]})[0]
|
|
embedding_after_update = doc_after_update.embedding
|
|
np.testing.assert_raises(AssertionError, np.testing.assert_array_equal, embedding_before_update, embedding_after_update)
|
|
|
|
# test update embeddings for newly added docs
|
|
documents = []
|
|
for i in range(12, 15):
|
|
documents.append({"content": f"text_{i}", "id": str(i), "meta_field": f"value_{i}"})
|
|
document_store.write_documents(documents, index="haystack_test_1")
|
|
document_store.update_embeddings(retriever, index="haystack_test_1", batch_size=3, update_existing_embeddings=False)
|
|
assert document_store.get_embedding_count(index="haystack_test_1") == 14
|
|
|
|
|
|
def test_delete_all_documents(document_store_with_docs):
|
|
assert len(document_store_with_docs.get_all_documents()) == 3
|
|
|
|
document_store_with_docs.delete_documents()
|
|
documents = document_store_with_docs.get_all_documents()
|
|
assert len(documents) == 0
|
|
|
|
|
|
def test_delete_documents(document_store_with_docs):
|
|
assert len(document_store_with_docs.get_all_documents()) == 3
|
|
|
|
document_store_with_docs.delete_documents()
|
|
documents = document_store_with_docs.get_all_documents()
|
|
assert len(documents) == 0
|
|
|
|
|
|
def test_delete_documents_with_filters(document_store_with_docs):
|
|
document_store_with_docs.delete_documents(filters={"meta_field": ["test1", "test2"]})
|
|
documents = document_store_with_docs.get_all_documents()
|
|
assert len(documents) == 1
|
|
assert documents[0].meta["meta_field"] == "test3"
|
|
|
|
|
|
def test_labels(document_store):
|
|
label = Label(
|
|
query="question",
|
|
answer=Answer(answer="answer",
|
|
type="extractive",
|
|
score=0.0,
|
|
context="something",
|
|
offsets_in_document=[Span(start=12, end=14)],
|
|
offsets_in_context=[Span(start=12, end=14)],
|
|
),
|
|
is_correct_answer=True,
|
|
is_correct_document=True,
|
|
document=Document(content="something", id="123"),
|
|
no_answer=False,
|
|
origin="gold-label",
|
|
)
|
|
document_store.write_labels([label], index="haystack_test_label")
|
|
labels = document_store.get_all_labels(index="haystack_test_label")
|
|
assert len(labels) == 1
|
|
assert label == labels[0]
|
|
|
|
# different index
|
|
labels = document_store.get_all_labels()
|
|
assert len(labels) == 0
|
|
|
|
# write second label + duplicate
|
|
label2 = Label(
|
|
query="question",
|
|
answer=Answer(answer="another answer",
|
|
type="extractive",
|
|
score=0.0,
|
|
context="something",
|
|
offsets_in_document=[Span(start=12, end=14)],
|
|
offsets_in_context=[Span(start=12, end=14)],
|
|
),
|
|
is_correct_answer=True,
|
|
is_correct_document=True,
|
|
document=Document(content="something", id="324"),
|
|
no_answer=False,
|
|
origin="gold-label",
|
|
)
|
|
document_store.write_labels([label, label2], index="haystack_test_label")
|
|
labels = document_store.get_all_labels(index="haystack_test_label")
|
|
|
|
# duplicate should not be there
|
|
assert len(labels) == 2
|
|
assert label in labels
|
|
assert label2 in labels
|
|
|
|
|
|
def test_multilabel(document_store):
|
|
labels =[
|
|
Label(
|
|
id="standard",
|
|
query="question",
|
|
answer=Answer(answer="answer1",
|
|
offsets_in_document=[Span(start=12, end=18)]),
|
|
document=Document(content="some", id="123"),
|
|
is_correct_answer=True,
|
|
is_correct_document=True,
|
|
no_answer=False,
|
|
origin="gold-label",
|
|
),
|
|
# different answer in same doc
|
|
Label(
|
|
id="diff-answer-same-doc",
|
|
query="question",
|
|
answer=Answer(answer="answer2",
|
|
offsets_in_document=[Span(start=12, end=18)]),
|
|
document=Document(content="some", id="123"),
|
|
is_correct_answer=True,
|
|
is_correct_document=True,
|
|
no_answer=False,
|
|
origin="gold-label",
|
|
),
|
|
# answer in different doc
|
|
Label(
|
|
id="diff-answer-diff-doc",
|
|
query="question",
|
|
answer=Answer(answer="answer3",
|
|
offsets_in_document=[Span(start=12, end=18)]),
|
|
document=Document(content="some other", id="333"),
|
|
is_correct_answer=True,
|
|
is_correct_document=True,
|
|
no_answer=False,
|
|
origin="gold-label",
|
|
),
|
|
# 'no answer', should be excluded from MultiLabel
|
|
Label(
|
|
id="4-no-answer",
|
|
query="question",
|
|
answer=Answer(answer="",
|
|
offsets_in_document=[Span(start=0, end=0)]),
|
|
document=Document(content="some", id="777"),
|
|
is_correct_answer=True,
|
|
is_correct_document=True,
|
|
no_answer=True,
|
|
origin="gold-label",
|
|
),
|
|
# is_correct_answer=False, should be excluded from MultiLabel if "drop_negatives = True"
|
|
Label(
|
|
id="5-negative",
|
|
query="question",
|
|
answer=Answer(answer="answer5",
|
|
offsets_in_document=[Span(start=12, end=18)]),
|
|
document=Document(content="some", id="123"),
|
|
is_correct_answer=False,
|
|
is_correct_document=True,
|
|
no_answer=False,
|
|
origin="gold-label",
|
|
),
|
|
]
|
|
document_store.write_labels(labels, index="haystack_test_multilabel")
|
|
# regular labels - not aggregated
|
|
list_labels = document_store.get_all_labels(index="haystack_test_multilabel")
|
|
assert list_labels == labels
|
|
assert len(list_labels) == 5
|
|
|
|
# Currently we don't enforce writing (missing) docs automatically when adding labels and there's no DB relationship between the two.
|
|
# We should introduce this when we refactored the logic of "index" to be rather a "collection" of labels+documents
|
|
# docs = document_store.get_all_documents(index="haystack_test_multilabel")
|
|
# assert len(docs) == 3
|
|
|
|
# Multi labels (open domain)
|
|
multi_labels_open = document_store.get_all_labels_aggregated(index="haystack_test_multilabel",
|
|
open_domain=True, drop_negative_labels=True)
|
|
|
|
# for open-domain we group all together as long as they have the same question
|
|
assert len(multi_labels_open) == 1
|
|
# all labels are in there except the negative one
|
|
assert len(multi_labels_open[0].answers) == 4
|
|
assert "5-negative" not in [l.id for l in multi_labels_open[0].labels]
|
|
|
|
# Don't drop the negative label
|
|
multi_labels_open = document_store.get_all_labels_aggregated(index="haystack_test_multilabel", open_domain=True,
|
|
drop_no_answers=False, drop_negative_labels=False)
|
|
assert len(multi_labels_open[0].answers) == 5
|
|
|
|
# Drop no answer + negative
|
|
multi_labels_open = document_store.get_all_labels_aggregated(index="haystack_test_multilabel", open_domain=True,
|
|
drop_no_answers=True, drop_negative_labels=True)
|
|
assert len(multi_labels_open[0].answers) == 3
|
|
|
|
# for closed domain we group by document so we expect 3 multilabels with 2,1,1 labels each (negative dropped again)
|
|
multi_labels = document_store.get_all_labels_aggregated(index="haystack_test_multilabel",
|
|
open_domain=False, drop_negative_labels=True)
|
|
assert len(multi_labels) == 3
|
|
label_counts = set([len(ml.labels) for ml in multi_labels])
|
|
assert label_counts == set([2,1,1])
|
|
|
|
assert len(multi_labels[0].answers) == len(multi_labels[0].document_ids)
|
|
|
|
|
|
# make sure there' nothing stored in another index
|
|
multi_labels = document_store.get_all_labels_aggregated()
|
|
assert len(multi_labels) == 0
|
|
docs = document_store.get_all_documents()
|
|
assert len(docs) == 0
|
|
|
|
|
|
def test_multilabel_no_answer(document_store):
|
|
|
|
labels = [
|
|
Label(
|
|
query="question",
|
|
answer=Answer(answer=""),
|
|
is_correct_answer=True,
|
|
is_correct_document=True,
|
|
document=Document(content="some", id="777"),
|
|
no_answer=True,
|
|
origin="gold-label",
|
|
),
|
|
# no answer in different doc
|
|
Label(
|
|
query="question",
|
|
answer=Answer(answer=""),
|
|
is_correct_answer=True,
|
|
is_correct_document=True,
|
|
document=Document(content="some", id="123"),
|
|
no_answer=True,
|
|
origin="gold-label",
|
|
),
|
|
# no answer in same doc, should be excluded
|
|
Label(
|
|
query="question",
|
|
answer=Answer(answer=""),
|
|
is_correct_answer=True,
|
|
is_correct_document=True,
|
|
document=Document(content="some", id="777"),
|
|
no_answer=True,
|
|
origin="gold-label",
|
|
),
|
|
# no answer with is_correct_answer=False, should be excluded
|
|
Label(
|
|
query="question",
|
|
answer=Answer(answer=""),
|
|
is_correct_answer=False,
|
|
is_correct_document=True,
|
|
document=Document(content="some", id="777"),
|
|
no_answer=True,
|
|
origin="gold-label",
|
|
),
|
|
]
|
|
|
|
document_store.write_labels(labels, index="haystack_test_multilabel_no_answer")
|
|
|
|
|
|
labels = document_store.get_all_labels(index="haystack_test_multilabel_no_answer")
|
|
assert len(labels) == 4
|
|
|
|
multi_labels = document_store.get_all_labels_aggregated(index="haystack_test_multilabel_no_answer",
|
|
open_domain=True,
|
|
drop_no_answers=False,
|
|
drop_negative_labels=True)
|
|
assert len(multi_labels) == 1
|
|
assert multi_labels[0].no_answer == True
|
|
assert len(multi_labels[0].document_ids) == 2
|
|
assert len(multi_labels[0].answers) == 2
|
|
|
|
multi_labels = document_store.get_all_labels_aggregated(index="haystack_test_multilabel_no_answer",
|
|
open_domain=True,
|
|
drop_no_answers=False,
|
|
drop_negative_labels=False)
|
|
assert len(multi_labels) == 1
|
|
assert multi_labels[0].no_answer == True
|
|
assert len(multi_labels[0].document_ids) == 3
|
|
assert len(multi_labels[0].labels) == 3
|
|
assert len(multi_labels[0].answers) == 3
|
|
|
|
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss"], indirect=True)
|
|
# Currently update_document_meta() is not implemented for Memory doc store
|
|
def test_update_meta(document_store):
|
|
documents = [
|
|
Document(
|
|
content="Doc1",
|
|
meta={"meta_key_1": "1", "meta_key_2": "1"}
|
|
),
|
|
Document(
|
|
content="Doc2",
|
|
meta={"meta_key_1": "2", "meta_key_2": "2"}
|
|
),
|
|
Document(
|
|
content="Doc3",
|
|
meta={"meta_key_1": "3", "meta_key_2": "3"}
|
|
)
|
|
]
|
|
document_store.write_documents(documents)
|
|
document_2 = document_store.get_all_documents(filters={"meta_key_2": ["2"]})[0]
|
|
document_store.update_document_meta(document_2.id, meta={"meta_key_1": "99", "meta_key_2": "2"})
|
|
updated_document = document_store.get_document_by_id(document_2.id)
|
|
assert len(updated_document.meta.keys()) == 2
|
|
assert updated_document.meta["meta_key_1"] == "99"
|
|
assert updated_document.meta["meta_key_2"] == "2"
|
|
|
|
|
|
@pytest.mark.parametrize("document_store_type", ["elasticsearch", "memory"])
|
|
def test_custom_embedding_field(document_store_type):
|
|
document_store = get_document_store(
|
|
document_store_type=document_store_type, embedding_field="custom_embedding_field"
|
|
)
|
|
doc_to_write = {"content": "test", "custom_embedding_field": np.random.rand(768).astype(np.float32)}
|
|
document_store.write_documents([doc_to_write])
|
|
documents = document_store.get_all_documents(return_embedding=True)
|
|
assert len(documents) == 1
|
|
assert documents[0].content == "test"
|
|
np.testing.assert_array_equal(doc_to_write["custom_embedding_field"], documents[0].embedding)
|
|
|
|
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
|
|
def test_get_meta_values_by_key(document_store):
|
|
documents = [
|
|
Document(
|
|
content="Doc1",
|
|
meta={"meta_key_1": "1", "meta_key_2": "11"}
|
|
),
|
|
Document(
|
|
content="Doc2",
|
|
meta={"meta_key_1": "2", "meta_key_2": "22"}
|
|
),
|
|
Document(
|
|
content="Doc3",
|
|
meta={"meta_key_1": "3", "meta_key_2": "33"}
|
|
)
|
|
]
|
|
document_store.write_documents(documents)
|
|
|
|
# test without filters or query
|
|
result = document_store.get_metadata_values_by_key(key="meta_key_1")
|
|
for bucket in result:
|
|
assert bucket["value"] in ["1", "2", "3"]
|
|
assert bucket["count"] == 1
|
|
|
|
# test with filters but no query
|
|
result = document_store.get_metadata_values_by_key(key="meta_key_1", filters={"meta_key_2": ["11", "22"]})
|
|
for bucket in result:
|
|
assert bucket["value"] in ["1", "2"]
|
|
assert bucket["count"] == 1
|
|
|
|
# test with filters & query
|
|
result = document_store.get_metadata_values_by_key(key="meta_key_1", query="Doc1")
|
|
for bucket in result:
|
|
assert bucket["value"] in ["1"]
|
|
assert bucket["count"] == 1
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
def test_elasticsearch_custom_fields(elasticsearch_fixture):
|
|
client = Elasticsearch()
|
|
client.indices.delete(index='haystack_test_custom', ignore=[404])
|
|
document_store = ElasticsearchDocumentStore(index="haystack_test_custom", content_field="custom_text_field",
|
|
embedding_field="custom_embedding_field")
|
|
|
|
doc_to_write = {"custom_text_field": "test", "custom_embedding_field": np.random.rand(768).astype(np.float32)}
|
|
document_store.write_documents([doc_to_write])
|
|
documents = document_store.get_all_documents(return_embedding=True)
|
|
assert len(documents) == 1
|
|
assert documents[0].content == "test"
|
|
np.testing.assert_array_equal(doc_to_write["custom_embedding_field"], documents[0].embedding)
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
def test_get_document_count_only_documents_without_embedding_arg():
|
|
documents = [
|
|
{"content": "text1", "id": "1", "embedding": np.random.rand(768).astype(np.float32), "meta_field_for_count": "a"},
|
|
{"content": "text2", "id": "2", "embedding": np.random.rand(768).astype(np.float64), "meta_field_for_count": "b"},
|
|
{"content": "text3", "id": "3", "embedding": np.random.rand(768).astype(np.float32).tolist()},
|
|
{"content": "text4", "id": "4", "meta_field_for_count": "b"},
|
|
{"content": "text5", "id": "5", "meta_field_for_count": "b"},
|
|
{"content": "text6", "id": "6", "meta_field_for_count": "c"},
|
|
{"content": "text7", "id": "7", "embedding": np.random.rand(768).astype(np.float64), "meta_field_for_count": "c"},
|
|
]
|
|
|
|
_index: str = "haystack_test_count"
|
|
document_store = ElasticsearchDocumentStore(index=_index)
|
|
document_store.delete_documents(index=_index)
|
|
|
|
document_store.write_documents(documents)
|
|
|
|
assert document_store.get_document_count() == 7
|
|
assert document_store.get_document_count(only_documents_without_embedding=True) == 3
|
|
assert document_store.get_document_count(only_documents_without_embedding=True,
|
|
filters={"meta_field_for_count": ["c"]}) == 1
|
|
assert document_store.get_document_count(only_documents_without_embedding=True,
|
|
filters={"meta_field_for_count": ["b"]}) == 2
|