mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-23 08:52:16 +00:00

* first draft / notes on new primitives * wip label / feedback refactor * rename doc.text -> doc.content. add doc.content_type * add datatype for content * remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field * update converters for . Add warning for empty * renam label.question -> label.query. Allow sorting of Answers. * WIP primitives * update ui/reader for new Answer format * Improve Label. First refactoring of MultiLabel. Adjust eval code * fixed workflow conflict with introducing new one (#1472) * Add latest docstring and tutorial changes * make add_eval_data() work again * fix reader formats. WIP fix _extract_docs_and_labels_from_dict * fix test reader * Add latest docstring and tutorial changes * fix another test case for reader * fix mypy in farm reader.eval() * fix mypy in farm reader.eval() * WIP ORM refactor * Add latest docstring and tutorial changes * fix mypy weaviate * make label and multilabel dataclasses * bump mypy env in CI to python 3.8 * WIP refactor Label ORM * WIP refactor Label ORM * simplify tests for individual doc stores * WIP refactoring markers of tests * test alternative approach for tests with existing parametrization * WIP refactor ORMs * fix skip logic of already parametrized tests * fix weaviate behaviour in tests - not parametrizing it in our general test cases. * Add latest docstring and tutorial changes * fix some tests * remove sql from document_store_types * fix markers for generator and pipeline test * remove inmemory marker * remove unneeded elasticsearch markers * add dataclasses-json dependency. adjust ORM to just store JSON repr * ignore type as dataclasses_json seems to miss functionality here * update readme and contributing.md * update contributing * adjust example * fix duplicate doc handling for custom index * Add latest docstring and tutorial changes * fix some ORM issues. fix get_all_labels_aggregated. * update drop flags where get_all_labels_aggregated() was used before * Add latest docstring and tutorial changes * add to_json(). add + fix tests * fix no_answer handling in label / multilabel * fix duplicate docs in memory doc store. change primary key for sql doc table * fix mypy issues * fix mypy issues * haystack/retriever/base.py * fix test_write_document_meta[elastic] * fix test_elasticsearch_custom_fields * fix test_labels[elastic] * fix crawler * fix converter * fix docx converter * fix preprocessor * fix test_utils * fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations * Add latest docstring and tutorial changes * fix crawler test. fix ocrconverter attribute * fix test_elasticsearch_custom_query * fix generator pipeline * fix ocr converter * fix ragenerator * Add latest docstring and tutorial changes * fix test_load_and_save_yaml for elasticsearch * fixes for pipeline tests * fix faq pipeline * fix pipeline tests * Add latest docstring and tutorial changes * fix weaviate * Add latest docstring and tutorial changes * trigger CI * satisfy mypy * Add latest docstring and tutorial changes * satisfy mypy * Add latest docstring and tutorial changes * trigger CI * fix question generation test * fix ray. fix Q-generation * fix translator test * satisfy mypy * wip refactor feedback rest api * fix rest api feedback endpoint * fix doc classifier * remove relation of Labels -> Docs in SQL ORM * fix faiss/milvus tests * fix doc classifier test * fix eval test * fixing eval issues * Add latest docstring and tutorial changes * fix mypy * WIP replace dataclasses-json with manual serialization * Add latest docstring and tutorial changes * revert to dataclass-json serialization for now. remove debug prints. * update docstrings * fix extractor. fix Answer Span init * fix api test * keep meta data of answers in reader.run() * fix meta handling * adress review feedback * Add latest docstring and tutorial changes * make document=None for open domain labels * add import * fix print utils * fix rest api * adress review feedback * Add latest docstring and tutorial changes * fix mypy Co-authored-by: Markus Paff <markuspaff.mp@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
83 lines
3.7 KiB
Python
Executable File
83 lines
3.7 KiB
Python
Executable File
from haystack.document_store.elasticsearch import ElasticsearchDocumentStore
|
|
|
|
from haystack.retriever.dense import EmbeddingRetriever
|
|
from haystack.utils import print_answers, launch_es
|
|
import pandas as pd
|
|
import requests
|
|
import logging
|
|
import subprocess
|
|
import time
|
|
|
|
|
|
def tutorial4_faq_style_qa():
|
|
## "FAQ-Style QA": Utilizing existing FAQs for Question Answering
|
|
|
|
# While *extractive Question Answering* works on pure texts and is therefore more generalizable, there's also a common alternative that utilizes existing FAQ data.
|
|
#
|
|
# Pros:
|
|
# - Very fast at inference time
|
|
# - Utilize existing FAQ data
|
|
# - Quite good control over answers
|
|
#
|
|
# Cons:
|
|
# - Generalizability: We can only answer questions that are similar to existing ones in FAQ
|
|
#
|
|
# In some use cases, a combination of extractive QA and FAQ-style can also be an interesting option.
|
|
launch_es()
|
|
|
|
### Init the DocumentStore
|
|
# In contrast to Tutorial 1 (extractive QA), we:
|
|
#
|
|
# * specify the name of our `text_field` in Elasticsearch that we want to return as an answer
|
|
# * specify the name of our `embedding_field` in Elasticsearch where we'll store the embedding of our question and that is used later for calculating our similarity to the incoming user question
|
|
# * set `excluded_meta_data=["question_emb"]` so that we don't return the huge embedding vectors in our search results
|
|
|
|
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="",
|
|
index="document",
|
|
embedding_field="question_emb",
|
|
embedding_dim=384,
|
|
excluded_meta_data=["question_emb"],
|
|
similarity="cosine")
|
|
|
|
### Create a Retriever using embeddings
|
|
# Instead of retrieving via Elasticsearch's plain BM25, we want to use vector similarity of the questions (user question vs. FAQ ones).
|
|
# We can use the `EmbeddingRetriever` for this purpose and specify a model that we use for the embeddings.
|
|
#
|
|
retriever = EmbeddingRetriever(document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2", use_gpu=True)
|
|
|
|
# Download a csv containing some FAQ data
|
|
# Here: Some question-answer pairs related to COVID-19
|
|
temp = requests.get("https://raw.githubusercontent.com/deepset-ai/COVID-QA/master/data/faqs/faq_covidbert.csv")
|
|
open('small_faq_covid.csv', 'wb').write(temp.content)
|
|
|
|
# Get dataframe with columns "question", "answer" and some custom metadata
|
|
df = pd.read_csv("small_faq_covid.csv")
|
|
# Minimal cleaning
|
|
df.fillna(value="", inplace=True)
|
|
df["question"] = df["question"].apply(lambda x: x.strip())
|
|
print(df.head())
|
|
|
|
# Get embeddings for our questions from the FAQs
|
|
questions = list(df["question"].values)
|
|
df["question_emb"] = retriever.embed_queries(texts=questions)
|
|
df = df.rename(columns={"question": "content"})
|
|
|
|
# Convert Dataframe to list of dicts and index them in our DocumentStore
|
|
docs_to_index = df.to_dict(orient="records")
|
|
document_store.write_documents(docs_to_index)
|
|
|
|
# Initialize a Pipeline (this time without a reader) and ask questions
|
|
|
|
from haystack.pipeline import FAQPipeline
|
|
pipe = FAQPipeline(retriever=retriever)
|
|
|
|
prediction = pipe.run(query="How is the virus spreading?", params={"Retriever": {"top_k": 10}})
|
|
print_answers(prediction, details="all")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tutorial4_faq_style_qa()
|
|
|
|
# This Haystack script was made with love by deepset in Berlin, Germany
|
|
# Haystack: https://github.com/deepset-ai/haystack
|
|
# deepset: https://deepset.ai/ |