haystack/test/benchmarks/reader_results.csv
Branden Chan 1cebcb7dda
Create time and performance benchmarks for all readers and retrievers (#339)
* add time and perf benchmark for es

* Add retriever benchmarking

* Add Reader benchmarking

* add nq to squad conversion

* add conversion stats

* clean benchmarks

* Add link to dataset

* Update imports

* add first support for neg psgs

* Refactor test

* set max_seq_len

* cleanup benchmark

* begin retriever speed benchmarking

* Add support for retriever query index benchmarking

* improve reader eval, retriever speed benchmarking

* improve retriever speed benchmarking

* Add retriever accuracy benchmark

* Add neg doc shuffling

* Add top_n

* 3x speedup of SQL. add postgres docker run. make shuffle neg a param. add more logging

* Add models to sweep

* add option for faiss index type

* remove unneeded line

* change faiss to faiss_flat

* begin automatic benchmark script

* remove existing postgres docker for benchmarking

* Add data processing scripts

* Remove shuffle in script bc data already shuffled

* switch hnsw setup from 256 to 128

* change es similarity to dot product by default

* Error includes stack trace

* Change ES default timeout

* remove delete_docs() from timing for indexing

* Add support for website export

* update website on push to benchmarks

* add complete benchmarks results

* new json format

* removed NaN as is not a valid json token

* fix benchmarking for faiss hnsw queries. do sql calls in update_embeddings() as batches

* update benchmarks for hnsw 128,20,80

* don't delete full index in delete_all_documents()

* update texts for charts

* update recall column for retriever

* change scale and add units to desc

* add units to legend

* add axis titles. update desc

* add html tags

Co-authored-by: deepset <deepset@Crenolape.localdomain>
Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
Co-authored-by: PiffPaffM <markuspaff.mp@gmail.com>
2020-10-12 13:34:42 +02:00

6 lines
864 B
CSV

,EM,f1,top_n_accuracy,top_n,reader_time,seconds_per_query,passages_per_second,reader,error
0,0.7589752233271532,0.8067985794671885,0.9671329849991572,5,133.79706027999998,0.011275666634080564,92.30397120949361,deepset/roberta-base-squad2,
1,0.7359683128265633,0.7823306265318686,0.9714309792684982,5,125.22323393199997,0.010553112584864317,98.62387044489225,deepset/minilm-uncased-squad2,
2,0.700825889094893,0.7490271600053505,0.9585369964604753,5,123.58959278499992,0.010415438461570867,99.92750782409666,deepset/bert-base-cased-squad2,
3,0.7821506826226192,0.8264545708097472,0.9762346199224675,5,312.42233685099995,0.026329204184308102,39.529824033964466,deepset/bert-large-uncased-whole-word-masking-squad2,
4,0.8099612337771785,0.8526275190954586,0.9772459126917242,5,314.3179854819998,0.026488958830439897,39.29142006004379,deepset/xlm-roberta-large-squad2,