mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-22 08:21:24 +00:00

* Testing black on ui/ * Applying black on docstores * Add latest docstring and tutorial changes * Create a single GH action for Black and docs to reduce commit noise to the minimum, slightly refactor the OpenAPI action too * Remove comments * Relax constraints on pydoc-markdown * Split temporary black from the docs. Pydoc-markdown was obsolete and needs a separate PR to upgrade * Fix a couple of bugs * Add a type: ignore that was missing somehow * Give path to black * Apply Black * Apply Black * Relocate a couple of type: ignore * Update documentation * Make Linux CI run after applying Black * Triggering Black * Apply Black * Remove dependency, does not work well * Remove manually double trailing commas * Update documentation Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
187 lines
8.7 KiB
Python
187 lines
8.7 KiB
Python
# # Extending your Metadata using DocumentClassifiers at Index Time
|
|
#
|
|
# With DocumentClassifier it's possible to automatically enrich your documents
|
|
# with categories, sentiments, topics or whatever metadata you like.
|
|
# This metadata could be used for efficient filtering or further processing.
|
|
# Say you have some categories your users typically filter on.
|
|
# If the documents are tagged manually with these categories, you could automate
|
|
# this process by training a model. Or you can leverage the full power and flexibility
|
|
# of zero shot classification. All you need to do is pass your categories to the classifier,
|
|
# no labels required.
|
|
# This tutorial shows how to integrate it in your indexing pipeline.
|
|
|
|
# DocumentClassifier adds the classification result (label and score) to Document's meta property.
|
|
# Hence, we can use it to classify documents at index time. \
|
|
# The result can be accessed at query time: for example by applying a filter for "classification.label".
|
|
|
|
# This tutorial will show you how to integrate a classification model into your preprocessing steps and how you can filter for this additional metadata at query time. In the last section we show how to put it all together and create an indexing pipeline.
|
|
|
|
|
|
# Here are the imports we need
|
|
from haystack.document_stores.elasticsearch import ElasticsearchDocumentStore
|
|
from haystack.nodes import PreProcessor, TransformersDocumentClassifier, FARMReader, ElasticsearchRetriever
|
|
from haystack.schema import Document
|
|
from haystack.utils import convert_files_to_dicts, fetch_archive_from_http, print_answers, launch_es
|
|
|
|
|
|
def tutorial16_document_classifier_at_index_time():
|
|
# This fetches some sample files to work with
|
|
|
|
doc_dir = "data/preprocessing_tutorial"
|
|
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/preprocessing_tutorial.zip"
|
|
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
|
|
|
|
# ## Read and preprocess documents
|
|
|
|
# note that you can also use the document classifier before applying the PreProcessor, e.g. before splitting your documents
|
|
all_docs = convert_files_to_dicts(dir_path=doc_dir)
|
|
preprocessor_sliding_window = PreProcessor(split_overlap=3, split_length=10, split_respect_sentence_boundary=False)
|
|
docs_sliding_window = preprocessor_sliding_window.process(all_docs)
|
|
|
|
# ## Apply DocumentClassifier
|
|
|
|
# We can enrich the document metadata at index time using any transformers document classifier model.
|
|
# Here we use a zero shot model that is supposed to classify our documents in 'music', 'natural language processing' and 'history'.
|
|
# While traditional classification models are trained to predict one of a few "hard-coded" classes and required a dedicated training dataset,
|
|
# zero-shot classification is super flexible and you can easily switch the classes the model should predict on the fly.
|
|
# Just supply them via the labels param.
|
|
# Feel free to change them for whatever you like to classify.
|
|
# These classes can later on be accessed at query time.
|
|
|
|
doc_classifier = TransformersDocumentClassifier(
|
|
model_name_or_path="cross-encoder/nli-distilroberta-base",
|
|
task="zero-shot-classification",
|
|
labels=["music", "natural language processing", "history"],
|
|
batch_size=16,
|
|
)
|
|
|
|
# we can also use any other transformers model besides zero shot classification
|
|
|
|
# doc_classifier_model = 'bhadresh-savani/distilbert-base-uncased-emotion'
|
|
# doc_classifier = TransformersDocumentClassifier(model_name_or_path=doc_classifier_model, batch_size=16)
|
|
|
|
# we could also specifiy a different field we want to run the classification on
|
|
|
|
# doc_classifier = TransformersDocumentClassifier(model_name_or_path="cross-encoder/nli-distilroberta-base",
|
|
# task="zero-shot-classification",
|
|
# labels=["music", "natural language processing", "history"],
|
|
# batch_size=16,
|
|
# classification_field="description")
|
|
|
|
# convert to Document using a fieldmap for custom content fields the classification should run on
|
|
docs_to_classify = [Document.from_dict(d) for d in docs_sliding_window]
|
|
|
|
# classify using gpu, batch_size makes sure we do not run out of memory
|
|
classified_docs = doc_classifier.predict(docs_to_classify)
|
|
|
|
# let's see how it looks: there should be a classification result in the meta entry containing labels and scores.
|
|
print(classified_docs[0].to_dict())
|
|
|
|
# ## Indexing
|
|
|
|
launch_es()
|
|
|
|
# Connect to Elasticsearch
|
|
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="", index="document")
|
|
|
|
# Now, let's write the docs to our DB.
|
|
document_store.delete_all_documents()
|
|
document_store.write_documents(classified_docs)
|
|
|
|
# check if indexed docs contain classification results
|
|
test_doc = document_store.get_all_documents()[0]
|
|
print(
|
|
f'document {test_doc.id} with content \n\n{test_doc.content}\n\nhas label {test_doc.meta["classification"]["label"]}'
|
|
)
|
|
|
|
# ## Querying the data
|
|
|
|
# All we have to do to filter for one of our classes is to set a filter on "classification.label".
|
|
|
|
# Initialize QA-Pipeline
|
|
from haystack.pipelines import ExtractiveQAPipeline
|
|
|
|
retriever = ElasticsearchRetriever(document_store=document_store)
|
|
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=True)
|
|
pipe = ExtractiveQAPipeline(reader, retriever)
|
|
|
|
## Voilà! Ask a question while filtering for "music"-only documents
|
|
prediction = pipe.run(
|
|
query="What is heavy metal?",
|
|
params={"Retriever": {"top_k": 10, "filters": {"classification.label": ["music"]}}, "Reader": {"top_k": 5}},
|
|
)
|
|
|
|
print_answers(prediction, details="high")
|
|
|
|
# ## Wrapping it up in an indexing pipeline
|
|
|
|
from pathlib import Path
|
|
from haystack.pipelines import Pipeline
|
|
from haystack.nodes import TextConverter, FileTypeClassifier, PDFToTextConverter, DocxToTextConverter
|
|
|
|
file_type_classifier = FileTypeClassifier()
|
|
text_converter = TextConverter()
|
|
pdf_converter = PDFToTextConverter()
|
|
docx_converter = DocxToTextConverter()
|
|
|
|
indexing_pipeline_with_classification = Pipeline()
|
|
indexing_pipeline_with_classification.add_node(
|
|
component=file_type_classifier, name="FileTypeClassifier", inputs=["File"]
|
|
)
|
|
indexing_pipeline_with_classification.add_node(
|
|
component=text_converter, name="TextConverter", inputs=["FileTypeClassifier.output_1"]
|
|
)
|
|
indexing_pipeline_with_classification.add_node(
|
|
component=pdf_converter, name="PdfConverter", inputs=["FileTypeClassifier.output_2"]
|
|
)
|
|
indexing_pipeline_with_classification.add_node(
|
|
component=docx_converter, name="DocxConverter", inputs=["FileTypeClassifier.output_4"]
|
|
)
|
|
indexing_pipeline_with_classification.add_node(
|
|
component=preprocessor_sliding_window,
|
|
name="Preprocessor",
|
|
inputs=["TextConverter", "PdfConverter", "DocxConverter"],
|
|
)
|
|
indexing_pipeline_with_classification.add_node(
|
|
component=doc_classifier, name="DocumentClassifier", inputs=["Preprocessor"]
|
|
)
|
|
indexing_pipeline_with_classification.add_node(
|
|
component=document_store, name="DocumentStore", inputs=["DocumentClassifier"]
|
|
)
|
|
indexing_pipeline_with_classification.draw("index_time_document_classifier.png")
|
|
|
|
document_store.delete_documents()
|
|
txt_files = [f for f in Path(doc_dir).iterdir() if f.suffix == ".txt"]
|
|
pdf_files = [f for f in Path(doc_dir).iterdir() if f.suffix == ".pdf"]
|
|
docx_files = [f for f in Path(doc_dir).iterdir() if f.suffix == ".docx"]
|
|
indexing_pipeline_with_classification.run(file_paths=txt_files)
|
|
indexing_pipeline_with_classification.run(file_paths=pdf_files)
|
|
indexing_pipeline_with_classification.run(file_paths=docx_files)
|
|
|
|
document_store.get_all_documents()[0]
|
|
|
|
# we can store this pipeline and use it from the REST-API
|
|
indexing_pipeline_with_classification.save_to_yaml("indexing_pipeline_with_classification.yaml")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tutorial16_document_classifier_at_index_time()
|
|
|
|
# ## About us
|
|
#
|
|
# This [Haystack](https://github.com/deepset-ai/haystack/) notebook was made with love by [deepset](https://deepset.ai/) in Berlin, Germany
|
|
#
|
|
# We bring NLP to the industry via open source!
|
|
# Our focus: Industry specific language models & large scale QA systems.
|
|
#
|
|
# Some of our other work:
|
|
# - [German BERT](https://deepset.ai/german-bert)
|
|
# - [GermanQuAD and GermanDPR](https://deepset.ai/germanquad)
|
|
# - [FARM](https://github.com/deepset-ai/FARM)
|
|
#
|
|
# Get in touch:
|
|
# [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
|
|
#
|
|
# By the way: [we're hiring!](https://www.deepset.ai/jobs)
|
|
#
|