haystack/tutorials/Tutorial9_DPR_training.py
Sara Zan a59bca3661
Apply black formatting (#2115)
* Testing black on ui/

* Applying black on docstores

* Add latest docstring and tutorial changes

* Create a single GH action for Black and docs to reduce commit noise to the minimum, slightly refactor the OpenAPI action too

* Remove comments

* Relax constraints on pydoc-markdown

* Split temporary black from the docs. Pydoc-markdown was obsolete and needs a separate PR to upgrade

* Fix a couple of bugs

* Add a type: ignore that was missing somehow

* Give path to black

* Apply Black

* Apply Black

* Relocate a couple of type: ignore

* Update documentation

* Make Linux CI run after applying Black

* Triggering Black

* Apply Black

* Remove dependency, does not work well

* Remove manually double trailing commas

* Update documentation

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-02-03 13:43:18 +01:00

88 lines
2.7 KiB
Python

def tutorial9_dpr_training():
# Training Your Own "Dense Passage Retrieval" Model
# Here are some imports that we'll need
from haystack.nodes import DensePassageRetriever
from haystack.utils import fetch_archive_from_http
from haystack.document_stores import InMemoryDocumentStore
# Download original DPR data
# WARNING: the train set is 7.4GB and the dev set is 800MB
doc_dir = "data/dpr_training/"
s3_url_train = "https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-train.json.gz"
s3_url_dev = "https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-dev.json.gz"
fetch_archive_from_http(s3_url_train, output_dir=doc_dir + "train/")
fetch_archive_from_http(s3_url_dev, output_dir=doc_dir + "dev/")
## Option 1: Training DPR from Scratch
# Here are the variables to specify our training data, the models that we use to initialize DPR
# and the directory where we'll be saving the model
doc_dir = "data/dpr_training/"
train_filename = "train/biencoder-nq-train.json"
dev_filename = "dev/biencoder-nq-dev.json"
query_model = "bert-base-uncased"
passage_model = "bert-base-uncased"
save_dir = "../saved_models/dpr"
# ## Option 2: Finetuning DPR
#
# # Here are the variables you might want to use instead of the set above
# # in order to perform pretraining
#
# doc_dir = "PATH_TO_YOUR_DATA_DIR"
# train_filename = "TRAIN_FILENAME"
# dev_filename = "DEV_FILENAME"
#
# query_model = "facebook/dpr-question_encoder-single-nq-base"
# passage_model = "facebook/dpr-ctx_encoder-single-nq-base"
#
# save_dir = "..saved_models/dpr"
## Initialize DPR model
retriever = DensePassageRetriever(
document_store=InMemoryDocumentStore(),
query_embedding_model=query_model,
passage_embedding_model=passage_model,
max_seq_len_query=64,
max_seq_len_passage=256,
)
# Start training our model and save it when it is finished
retriever.train(
data_dir=doc_dir,
train_filename=train_filename,
dev_filename=dev_filename,
test_filename=dev_filename,
n_epochs=1,
batch_size=16,
grad_acc_steps=8,
save_dir=save_dir,
evaluate_every=3000,
embed_title=True,
num_positives=1,
num_hard_negatives=1,
)
## Loading
reloaded_retriever = DensePassageRetriever.load(load_dir=save_dir, document_store=None)
if __name__ == "__main__":
tutorial9_dpr_training()
# This Haystack script was made with love by deepset in Berlin, Germany
# Haystack: https://github.com/deepset-ai/haystack
# deepset: https://deepset.ai/