mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-11-03 03:09:28 +00:00
* initial test cml * Update cml.yaml * WIP test workflow * switch to general ubuntu ami * switch to general ubuntu ami * disable gpu for tests * rm gpu infos * rm gpu infos * update token env * switch github token * add postgres * test db connection * fix typo * remove tty * add sleep for db * debug runner * debug removal postgres * debug: reset to working commit * debug: change github token * switch to new bot token * debug token * add back postgres * adjust network runner docker * add elastic * fix typo * adjust working dir * fix benchmark execution * enable s3 downloads * add query benchmark. fix path * add saving of markdown files * cat md files. add faiss+dpr. increase n_queries * switch to GPU instance * switch availability zone * switch to public aws DL ami * increase volume size * rm faiss. fix error logging * save markdown files * add reader benchmarks * add download of squad data * correct reader metric normalization * fix newlines between reports * fix max_docs for reader eval data. remove max_docs from ci run config * fix mypy. switch workflow trigger * try trigger for label * try trigger for label * change trigger syntax * debug machine shutdown with test workflow * add es and postgres to test workflow * Revert "add es and postgres to test workflow" This reverts commit 6f038d3d7f12eea924b54529e61b192858eaa9d5. * Revert "debug machine shutdown with test workflow" This reverts commit db70eabae8850b88e1d61fd79b04d4f49d54990a. * fix typo in action. set benchmark config back to original
Benchmarks
Run the benchmarks with the following command:
python run.py [--reader] [--retriever_index] [--retriever_query] [--ci] [--update-json]
You can specify which components and processes to benchmark with the following flags.
--reader will trigger the speed and accuracy benchmarks for the reader. Here we simply use the SQuAD dev set.
--retriever_index will trigger indexing benchmarks
--retriever_query will trigger querying benchmarks (embeddings will be loaded from file instead of being computed on the fly)
--ci will cause the the benchmarks to run on a smaller slice of each dataset and a smaller subset of Retriever / Reader / DocStores.
--update-json will cause the script to update the json files in docs/_src/benchmarks so that the website benchmarks will be updated.