haystack/test/test_eval.py
Sara Zan 96c05c34e4
Pipeline node names validation (#1601)
* Add node names validation

* Add tests

* Improve test and test that params exists before validating

* Fix the REST API

* Use minilm-uncased-squad2 instead of roberta-base-squad2

* Use roberta model for test_pipeline.yaml

* Turn off TOKENIZERS_PARALLELISM in generator tests (#1605)

* Account for non-targeted parameters

* Restore previous parameters handling in the rest api

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Julian Risch <julian.risch@deepset.ai>
2021-10-19 15:22:44 +02:00

183 lines
7.4 KiB
Python

import pytest
from haystack.document_store.base import BaseDocumentStore
from haystack.preprocessor.preprocessor import PreProcessor
from haystack.eval import EvalAnswers, EvalDocuments
from haystack import Pipeline
@pytest.mark.parametrize("batch_size", [None, 20])
def test_add_eval_data(document_store, batch_size):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/small.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
batch_size=batch_size,
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 87
assert document_store.get_label_count(index="haystack_test_feedback") == 1214
# test documents
docs = document_store.get_all_documents(index="haystack_test_eval_document", filters={"name": ["Normans"]})
assert docs[0].meta["name"] == "Normans"
assert len(docs[0].meta.keys()) == 1
# test labels
labels = document_store.get_all_labels(index="haystack_test_feedback")
label = None
for l in labels:
if l.query == "In what country is Normandy located?":
label = l
break
assert label.answer.answer == "France"
assert label.no_answer == False
assert label.is_correct_answer == True
assert label.is_correct_document == True
assert label.query == "In what country is Normandy located?"
assert label.origin == "gold-label"
assert label.answer.offsets_in_document[0].start == 159
assert label.answer.context[label.answer.offsets_in_context[0].start:label.answer.offsets_in_context[0].end] == "France"
assert label.answer.document_id == label.document.id
# check combination
doc = document_store.get_document_by_id(label.document.id, index="haystack_test_eval_document")
start = label.answer.offsets_in_document[0].start
end = label.answer.offsets_in_document[0].end
assert end == start + len(label.answer.answer)
assert doc.content[start:end] == "France"
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_eval_reader(reader, document_store: BaseDocumentStore):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
# eval reader
reader_eval_results = reader.eval(
document_store=document_store,
label_index="haystack_test_feedback",
doc_index="haystack_test_eval_document",
device="cpu",
)
assert reader_eval_results["f1"] > 66.65
assert reader_eval_results["f1"] < 66.67
assert reader_eval_results["EM"] == 50
assert reader_eval_results["top_n_accuracy"] == 100.0
@pytest.mark.elasticsearch
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("open_domain", [True, False])
@pytest.mark.parametrize("retriever", ["elasticsearch"], indirect=True)
def test_eval_elastic_retriever(document_store: BaseDocumentStore, open_domain, retriever):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
# eval retriever
results = retriever.eval(
top_k=1, label_index="haystack_test_feedback", doc_index="haystack_test_eval_document", open_domain=open_domain
)
assert results["recall"] == 1.0
assert results["mrr"] == 1.0
if not open_domain:
assert results["map"] == 1.0
# TODO simplify with a mock retriever and make it independent of elasticsearch documentstore
@pytest.mark.elasticsearch
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
@pytest.mark.parametrize("retriever", ["elasticsearch"], indirect=True)
def test_eval_pipeline(document_store: BaseDocumentStore, reader, retriever):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
labels = document_store.get_all_labels_aggregated(index="haystack_test_feedback",
drop_negative_labels=True,
drop_no_answers=False)
eval_retriever = EvalDocuments()
eval_reader = EvalAnswers(sas_model="sentence-transformers/paraphrase-MiniLM-L3-v2",debug=True)
eval_reader_cross = EvalAnswers(sas_model="cross-encoder/stsb-TinyBERT-L-4",debug=True)
eval_reader_vanila = EvalAnswers()
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
p = Pipeline()
p.add_node(component=retriever, name="ESRetriever", inputs=["Query"])
p.add_node(component=eval_retriever, name="EvalDocuments", inputs=["ESRetriever"])
p.add_node(component=reader, name="QAReader", inputs=["EvalDocuments"])
p.add_node(component=eval_reader, name="EvalAnswers", inputs=["QAReader"])
p.add_node(component=eval_reader_cross, name="EvalAnswers_cross", inputs=["QAReader"])
p.add_node(component=eval_reader_vanila, name="EvalAnswers_vanilla", inputs=["QAReader"])
for l in labels:
res = p.run(
query=l.query,
labels=l,
params={"ESRetriever":{"index": "haystack_test_eval_document"}}
)
assert eval_retriever.recall == 1.0
assert round(eval_reader.top_k_f1, 4) == 0.8333
assert eval_reader.top_k_em == 0.5
assert round(eval_reader.top_k_sas, 3) == 0.800
assert round(eval_reader_cross.top_k_sas, 3) == 0.671
assert eval_reader.top_k_em == eval_reader_vanila.top_k_em
def test_eval_data_split_word(document_store):
# splitting by word
preprocessor = PreProcessor(
clean_empty_lines=False,
clean_whitespace=False,
clean_header_footer=False,
split_by="word",
split_length=4,
split_overlap=0,
split_respect_sentence_boundary=False,
)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
preprocessor=preprocessor,
)
labels = document_store.get_all_labels_aggregated(index="haystack_test_feedback")
docs = document_store.get_all_documents(index="haystack_test_eval_document")
assert len(docs) == 5
assert len(set(labels[0].document_ids)) == 2
def test_eval_data_split_passage(document_store):
# splitting by passage
preprocessor = PreProcessor(
clean_empty_lines=False,
clean_whitespace=False,
clean_header_footer=False,
split_by="passage",
split_length=1,
split_overlap=0,
split_respect_sentence_boundary=False
)
document_store.add_eval_data(
filename="samples/squad/tiny_passages.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
preprocessor=preprocessor,
)
docs = document_store.get_all_documents(index="haystack_test_eval_document")
assert len(docs) == 2
assert len(docs[1].content) == 56