mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-27 10:49:52 +00:00

* Add type annotations in QuestionAnsweringHead * Fix test by increasing max_seq_len * Add SampleBasket type annotation * Remove prediction head param from adaptive model init * Add type ignore for AdaptiveModel init * Fix and rename tests * Adjust folder structure Co-authored-by: Julian Risch <julian.risch@deepset.ai>
128 lines
7.7 KiB
Python
128 lines
7.7 KiB
Python
import logging
|
|
|
|
from haystack.modeling.data_handler.processor import SquadProcessor
|
|
from haystack.modeling.model.tokenization import Tokenizer
|
|
|
|
|
|
# during inference (parameter return_baskets = False) we do not convert labels
|
|
def test_dataset_from_dicts_qa_inference(caplog=None):
|
|
if caplog:
|
|
caplog.set_level(logging.CRITICAL)
|
|
|
|
models = [
|
|
"deepset/roberta-base-squad2",
|
|
"deepset/bert-base-cased-squad2",
|
|
"deepset/xlm-roberta-large-squad2",
|
|
"deepset/minilm-uncased-squad2",
|
|
"deepset/electra-base-squad2",
|
|
]
|
|
sample_types = ["answer-wrong", "answer-offset-wrong", "noanswer", "vanilla"]
|
|
|
|
for model in models:
|
|
tokenizer = Tokenizer.load(pretrained_model_name_or_path=model, use_fast=True)
|
|
processor = SquadProcessor(tokenizer, max_seq_len=256, data_dir=None)
|
|
|
|
for sample_type in sample_types:
|
|
dicts = processor.file_to_dicts(f"samples/qa/{sample_type}.json")
|
|
dataset, tensor_names, problematic_sample_ids, baskets = processor.dataset_from_dicts(dicts, indices=[1], return_baskets=True)
|
|
assert tensor_names == ['input_ids', 'padding_mask', 'segment_ids', 'passage_start_t', 'start_of_word', 'labels', 'id', 'seq_2_start_t', 'span_mask'], f"Processing for {model} has changed."
|
|
assert len(problematic_sample_ids) == 0, f"Processing for {model} has changed."
|
|
assert baskets[0].id_external == '5ad3d560604f3c001a3ff2c8', f"Processing for {model} has changed."
|
|
assert baskets[0].id_internal == '1-0', f"Processing for {model} has changed."
|
|
|
|
# roberta
|
|
if model == "deepset/roberta-base-squad2":
|
|
assert len(baskets[0].samples[0].tokenized["passage_tokens"]) == 6, f"Processing for {model} has changed."
|
|
assert len(baskets[0].samples[0].tokenized["question_tokens"]) == 7, f"Processing for {model} has changed."
|
|
if sample_type == "noanswer":
|
|
assert baskets[0].samples[0].features[0]["input_ids"][:13] == \
|
|
[0, 6179, 171, 82, 697, 11, 2201, 116, 2, 2, 26795, 2614, 34], \
|
|
f"Processing for {model} and {sample_type}-testsample has changed."
|
|
else:
|
|
assert baskets[0].samples[0].features[0]["input_ids"][:13] == \
|
|
[0, 6179, 171, 82, 697, 11, 5459, 116, 2, 2, 26795, 2614, 34], \
|
|
f"Processing for {model} and {sample_type}-testsample has changed."
|
|
|
|
# bert
|
|
if model == "deepset/bert-base-cased-squad2":
|
|
assert len(baskets[0].samples[0].tokenized["passage_tokens"]) == 5, f"Processing for {model} has changed."
|
|
assert len(baskets[0].samples[0].tokenized["question_tokens"]) == 7, f"Processing for {model} has changed."
|
|
if sample_type == "noanswer":
|
|
assert baskets[0].samples[0].features[0]["input_ids"][:10] == \
|
|
[101, 1731, 1242, 1234, 1686, 1107, 2123, 136, 102, 3206], \
|
|
f"Processing for {model} and {sample_type}-testsample has changed."
|
|
else:
|
|
assert baskets[0].samples[0].features[0]["input_ids"][:10] == \
|
|
[101, 1731, 1242, 1234, 1686, 1107, 3206, 136, 102, 3206], \
|
|
f"Processing for {model} and {sample_type}-testsample has changed."
|
|
|
|
# xlm-roberta
|
|
if model == "deepset/xlm-roberta-large-squad2":
|
|
assert len(baskets[0].samples[0].tokenized["passage_tokens"]) == 7, f"Processing for {model} has changed."
|
|
assert len(baskets[0].samples[0].tokenized["question_tokens"]) == 7, f"Processing for {model} has changed."
|
|
if sample_type == "noanswer":
|
|
assert baskets[0].samples[0].features[0]["input_ids"][:12] == \
|
|
[0, 11249, 5941, 3395, 6867, 23, 7270, 32, 2, 2, 10271, 1556], \
|
|
f"Processing for {model} and {sample_type}-testsample has changed."
|
|
else:
|
|
assert baskets[0].samples[0].features[0]["input_ids"][:12] == \
|
|
[0, 11249, 5941, 3395, 6867, 23, 10271, 32, 2, 2, 10271, 1556], \
|
|
f"Processing for {model} and {sample_type}-testsample has changed."
|
|
|
|
# minilm and electra have same vocab + tokenizer
|
|
if model == "deepset/minilm-uncased-squad2" or model == "deepset/electra-base-squad2":
|
|
assert len(baskets[0].samples[0].tokenized["passage_tokens"]) == 5, f"Processing for {model} has changed."
|
|
assert len(baskets[0].samples[0].tokenized["question_tokens"]) == 7, f"Processing for {model} has changed."
|
|
if sample_type == "noanswer":
|
|
assert baskets[0].samples[0].features[0]["input_ids"][:10] == \
|
|
[101, 2129, 2116, 2111, 2444, 1999, 3000, 1029, 102, 4068], \
|
|
f"Processing for {model} and {sample_type}-testsample has changed."
|
|
else:
|
|
assert baskets[0].samples[0].features[0]["input_ids"][:10] == \
|
|
[101, 2129, 2116, 2111, 2444, 1999, 4068, 1029, 102, 4068], \
|
|
f"Processing for {model} and {sample_type}-testsample has changed."
|
|
|
|
|
|
def test_dataset_from_dicts_qa_labelconversion(caplog=None):
|
|
if caplog:
|
|
caplog.set_level(logging.CRITICAL)
|
|
|
|
models = [
|
|
"deepset/roberta-base-squad2",
|
|
"deepset/bert-base-cased-squad2",
|
|
"deepset/xlm-roberta-large-squad2",
|
|
"deepset/minilm-uncased-squad2",
|
|
"deepset/electra-base-squad2",
|
|
]
|
|
sample_types = ["answer-wrong", "answer-offset-wrong", "noanswer", "vanilla"]
|
|
|
|
for model in models:
|
|
tokenizer = Tokenizer.load(pretrained_model_name_or_path=model, use_fast=True)
|
|
processor = SquadProcessor(tokenizer, max_seq_len=256, data_dir=None)
|
|
|
|
for sample_type in sample_types:
|
|
dicts = processor.file_to_dicts(f"samples/qa/{sample_type}.json")
|
|
dataset, tensor_names, problematic_sample_ids = processor.dataset_from_dicts(dicts, indices=[1], return_baskets=False)
|
|
|
|
if sample_type == "answer-wrong" or sample_type == "answer-offset-wrong":
|
|
assert len(problematic_sample_ids) == 1, f"Processing labels for {model} has changed."
|
|
|
|
if sample_type == "noanswer":
|
|
assert list(dataset.tensors[tensor_names.index("labels")].numpy()[0, 0, :]) == [0, 0], f"Processing labels for {model} has changed."
|
|
assert list(dataset.tensors[tensor_names.index("labels")].numpy()[0, 1, :]) == [-1, -1], f"Processing labels for {model} has changed."
|
|
|
|
if sample_type == "vanilla":
|
|
# roberta
|
|
if model == "deepset/roberta-base-squad2":
|
|
assert list(dataset.tensors[tensor_names.index("labels")].numpy()[0,0,:]) == [13, 13], f"Processing labels for {model} has changed."
|
|
assert list(dataset.tensors[tensor_names.index("labels")].numpy()[0,1,:]) == [13, 14], f"Processing labels for {model} has changed."
|
|
# bert, minilm, electra
|
|
if model == "deepset/bert-base-cased-squad2" or model == "deepset/minilm-uncased-squad2" or model == "deepset/electra-base-squad2":
|
|
assert list(dataset.tensors[tensor_names.index("labels")].numpy()[0,0,:]) == [11, 11], f"Processing labels for {model} has changed."
|
|
# xlm-roberta
|
|
if model == "deepset/xlm-roberta-large-squad2":
|
|
assert list(dataset.tensors[tensor_names.index("labels")].numpy()[0,0,:]) == [12, 12], f"Processing labels for {model} has changed."
|
|
|
|
|
|
if(__name__=="__main__"):
|
|
test_dataset_from_dicts_qa_labelconversion() |