haystack/test/test_extractor.py
Tuana Celik d49e92e21c
ElasticsearchRetriever to BM25Retriever (#2423)
* change class names to bm25

* Update Documentation & Code Style

* Update Documentation & Code Style

* Update Documentation & Code Style

* Add back all_terms_must_match

* fix syntax

* Update Documentation & Code Style

* Update Documentation & Code Style

* Creating a wrapper for old ES retriever with deprecated wrapper

* Update Documentation & Code Style

* New method for deprecating old ESRetriever

* New attempt for deprecating the ESRetriever

* Reverting to the simplest solution - warning logged

* Update Documentation & Code Style

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Sara Zan <sara.zanzottera@deepset.ai>
2022-04-26 16:09:39 +02:00

47 lines
1.9 KiB
Python

import pytest
from haystack.nodes.retriever.sparse import BM25Retriever
from haystack.nodes.reader import FARMReader
from haystack.pipelines import Pipeline
from haystack.nodes.extractor import EntityExtractor, simplify_ner_for_qa
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
def test_extractor(document_store_with_docs):
es_retriever = BM25Retriever(document_store=document_store_with_docs)
ner = EntityExtractor()
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", num_processes=0)
pipeline = Pipeline()
pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["Query"])
pipeline.add_node(component=ner, name="NER", inputs=["ESRetriever"])
pipeline.add_node(component=reader, name="Reader", inputs=["NER"])
prediction = pipeline.run(
query="Who lives in Berlin?", params={"ESRetriever": {"top_k": 1}, "Reader": {"top_k": 1}}
)
entities = [entity["word"] for entity in prediction["answers"][0].meta["entities"]]
assert "Carla" in entities
assert "Berlin" in entities
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
def test_extractor_output_simplifier(document_store_with_docs):
es_retriever = BM25Retriever(document_store=document_store_with_docs)
ner = EntityExtractor()
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", num_processes=0)
pipeline = Pipeline()
pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["Query"])
pipeline.add_node(component=ner, name="NER", inputs=["ESRetriever"])
pipeline.add_node(component=reader, name="Reader", inputs=["NER"])
prediction = pipeline.run(
query="Who lives in Berlin?", params={"ESRetriever": {"top_k": 1}, "Reader": {"top_k": 1}}
)
simplified = simplify_ner_for_qa(prediction)
assert simplified[0] == {"answer": "Carla", "entities": ["Carla"]}