mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-20 23:41:36 +00:00

* Refactoring the `Raypipeline.run` method - merging it with the `Pipeline.run` This is to fix #2968 * Bug: variable `i` was already in use * Removing unused imports * Removing unused import * [EMPTY] Re-trigger CI * Addressing concerns raised pre-review - Removing the attempt to try to make it without the need for `JoinDocuments` - it is okey to fail without `JoinDocuments` for certain pipelines. * Refactoring based on reviews
71 lines
2.8 KiB
Python
71 lines
2.8 KiB
Python
from pathlib import Path
|
|
|
|
import pytest
|
|
import ray
|
|
|
|
from haystack.pipelines import RayPipeline
|
|
|
|
from ..conftest import SAMPLES_PATH
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def shutdown_ray():
|
|
yield
|
|
try:
|
|
import ray
|
|
|
|
ray.serve.shutdown()
|
|
ray.shutdown()
|
|
except:
|
|
pass
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
|
|
@pytest.mark.parametrize("serve_detached", [True, False])
|
|
def test_load_pipeline(document_store_with_docs, serve_detached):
|
|
pipeline = RayPipeline.load_from_yaml(
|
|
SAMPLES_PATH / "pipeline" / "ray.simple.haystack-pipeline.yml",
|
|
pipeline_name="ray_query_pipeline",
|
|
ray_args={"num_cpus": 8},
|
|
serve_args={"detached": serve_detached},
|
|
)
|
|
prediction = pipeline.run(
|
|
query="Who lives in Berlin?", params={"ESRetriever": {"top_k": 10}, "Reader": {"top_k": 3}}
|
|
)
|
|
|
|
assert pipeline._serve_controller_client._detached == serve_detached
|
|
assert ray.serve.get_deployment(name="ESRetriever").num_replicas == 2
|
|
assert ray.serve.get_deployment(name="Reader").num_replicas == 1
|
|
assert ray.serve.get_deployment(name="ESRetriever").max_concurrent_queries == 17
|
|
assert ray.serve.get_deployment(name="ESRetriever").ray_actor_options["num_cpus"] == 0.5
|
|
assert prediction["query"] == "Who lives in Berlin?"
|
|
assert prediction["answers"][0].answer == "Carla"
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
|
|
def test_load_advanced_pipeline(document_store_with_docs):
|
|
pipeline = RayPipeline.load_from_yaml(
|
|
SAMPLES_PATH / "pipeline" / "ray.advanced.haystack-pipeline.yml",
|
|
pipeline_name="ray_query_pipeline",
|
|
ray_args={"num_cpus": 8},
|
|
serve_args={"detached": True},
|
|
)
|
|
prediction = pipeline.run(
|
|
query="Who lives in Berlin?",
|
|
params={"ESRetriever1": {"top_k": 1}, "ESRetriever2": {"top_k": 2}, "Reader": {"top_k": 3}},
|
|
)
|
|
|
|
assert pipeline._serve_controller_client._detached is True
|
|
assert ray.serve.get_deployment(name="ESRetriever1").num_replicas == 2
|
|
assert ray.serve.get_deployment(name="ESRetriever2").num_replicas == 2
|
|
assert ray.serve.get_deployment(name="Reader").num_replicas == 1
|
|
assert ray.serve.get_deployment(name="ESRetriever1").max_concurrent_queries == 17
|
|
assert ray.serve.get_deployment(name="ESRetriever2").max_concurrent_queries == 15
|
|
assert ray.serve.get_deployment(name="ESRetriever1").ray_actor_options["num_cpus"] == 0.25
|
|
assert ray.serve.get_deployment(name="ESRetriever2").ray_actor_options["num_cpus"] == 0.25
|
|
assert prediction["query"] == "Who lives in Berlin?"
|
|
assert prediction["answers"][0].answer == "Carla"
|
|
assert len(prediction["answers"]) > 1
|