mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-30 12:22:52 +00:00

* Testing black on ui/ * Applying black on docstores * Add latest docstring and tutorial changes * Create a single GH action for Black and docs to reduce commit noise to the minimum, slightly refactor the OpenAPI action too * Remove comments * Relax constraints on pydoc-markdown * Split temporary black from the docs. Pydoc-markdown was obsolete and needs a separate PR to upgrade * Fix a couple of bugs * Add a type: ignore that was missing somehow * Give path to black * Apply Black * Apply Black * Relocate a couple of type: ignore * Update documentation * Make Linux CI run after applying Black * Triggering Black * Apply Black * Remove dependency, does not work well * Remove manually double trailing commas * Update documentation Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
39 lines
1.6 KiB
Python
39 lines
1.6 KiB
Python
import pytest
|
|
|
|
from haystack.pipelines import TranslationWrapperPipeline, SearchSummarizationPipeline
|
|
from haystack.nodes import DensePassageRetriever, EmbeddingRetriever
|
|
from test_summarizer import SPLIT_DOCS
|
|
|
|
# Keeping few (retriever,document_store) combination to reduce test time
|
|
@pytest.mark.slow
|
|
@pytest.mark.elasticsearch
|
|
@pytest.mark.summarizer
|
|
@pytest.mark.parametrize(
|
|
"retriever,document_store",
|
|
[("embedding", "memory"), ("elasticsearch", "elasticsearch")],
|
|
indirect=True,
|
|
)
|
|
def test_summarization_pipeline_with_translator(
|
|
document_store, retriever, summarizer, en_to_de_translator, de_to_en_translator
|
|
):
|
|
document_store.write_documents(SPLIT_DOCS)
|
|
|
|
if isinstance(retriever, EmbeddingRetriever) or isinstance(retriever, DensePassageRetriever):
|
|
document_store.update_embeddings(retriever=retriever)
|
|
|
|
query = "Wo steht der Eiffelturm?"
|
|
base_pipeline = SearchSummarizationPipeline(retriever=retriever, summarizer=summarizer)
|
|
pipeline = TranslationWrapperPipeline(
|
|
input_translator=de_to_en_translator, output_translator=en_to_de_translator, pipeline=base_pipeline
|
|
)
|
|
output = pipeline.run(
|
|
query=query, params={"Retriever": {"top_k": 2}, "Summarizer": {"generate_single_summary": True}}
|
|
)
|
|
# SearchSummarizationPipeline return answers but Summarizer return documents
|
|
documents = output["documents"]
|
|
assert len(documents) == 1
|
|
assert documents[0].content in [
|
|
"Der Eiffelturm ist ein Wahrzeichen in Paris, Frankreich.",
|
|
"Der Eiffelturm, der 1889 in Paris, Frankreich, erbaut wurde, ist das höchste freistehende Bauwerk der Welt.",
|
|
]
|