mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-01-01 09:37:36 +00:00
* Add milvus benchmarking support * Add latest docstring and tutorial changes * Edit config * Disable docker interactive mode * Add milvus index type support * Adjust FAISS and Milvus node branching * Remove duplicate in config * Revert method for speedup * Add latest docstring and tutorial changes * Add latest benchmark run * Add latest docstring and tutorial changes * Add json files * Revert "Add latest docstring and tutorial changes" This reverts commit e2efa5f08aa4fb55bbeeed42aa76817d63fc8923. * Add latest docstring and tutorial changes * Revert "Add latest docstring and tutorial changes" This reverts commit b085a679b9d5f175e91c2c59565e73c5dec1374b. * Fix typo Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Benchmarks
Run the benchmarks with the following command:
python run.py [--reader] [--retriever_index] [--retriever_query] [--ci] [--update-json]
You can specify which components and processes to benchmark with the following flags.
--reader will trigger the speed and accuracy benchmarks for the reader. Here we simply use the SQuAD dev set.
--retriever_index will trigger indexing benchmarks
--retriever_query will trigger querying benchmarks (embeddings will be loaded from file instead of being computed on the fly)
--ci will cause the the benchmarks to run on a smaller slice of each dataset and a smaller subset of Retriever / Reader / DocStores.
--update-json will cause the script to update the json files in docs/_src/benchmarks so that the website benchmarks will be updated.