mirror of
				https://github.com/deepset-ai/haystack.git
				synced 2025-10-31 09:49:48 +00:00 
			
		
		
		
	 7ffeccece6
			
		
	
	
		7ffeccece6
		
			
		
	
	
	
	
		
			
			* fix tutorial 4 dataset path * fix tutorial 8 dataset path * fix tutorial 10 event * Update Documentation & Code Style * fix send event for tutorial 15 * Update Documentation & Code Style Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
		
			
				
	
	
		
			92 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| from haystack.document_stores import ElasticsearchDocumentStore
 | |
| 
 | |
| from haystack.nodes import EmbeddingRetriever
 | |
| from haystack.utils import launch_es, print_answers, fetch_archive_from_http
 | |
| import pandas as pd
 | |
| import requests
 | |
| import logging
 | |
| import subprocess
 | |
| import time
 | |
| 
 | |
| 
 | |
| def tutorial4_faq_style_qa():
 | |
|     ## "FAQ-Style QA": Utilizing existing FAQs for Question Answering
 | |
| 
 | |
|     # While *extractive Question Answering* works on pure texts and is therefore more generalizable, there's also a common alternative that utilizes existing FAQ data.
 | |
|     #
 | |
|     # Pros:
 | |
|     # - Very fast at inference time
 | |
|     # - Utilize existing FAQ data
 | |
|     # - Quite good control over answers
 | |
|     #
 | |
|     # Cons:
 | |
|     # - Generalizability: We can only answer questions that are similar to existing ones in FAQ
 | |
|     #
 | |
|     # In some use cases, a combination of extractive QA and FAQ-style can also be an interesting option.
 | |
|     launch_es()
 | |
| 
 | |
|     ### Init the DocumentStore
 | |
|     # In contrast to Tutorial 1 (extractive QA), we:
 | |
|     #
 | |
|     # * specify the name of our `text_field` in Elasticsearch that we want to return as an answer
 | |
|     # * specify the name of our `embedding_field` in Elasticsearch where we'll store the embedding of our question and that is used later for calculating our similarity to the incoming user question
 | |
|     # * set `excluded_meta_data=["question_emb"]` so that we don't return the huge embedding vectors in our search results
 | |
| 
 | |
|     document_store = ElasticsearchDocumentStore(
 | |
|         host="localhost",
 | |
|         username="",
 | |
|         password="",
 | |
|         index="document",
 | |
|         embedding_field="question_emb",
 | |
|         embedding_dim=384,
 | |
|         excluded_meta_data=["question_emb"],
 | |
|         similarity="cosine",
 | |
|     )
 | |
| 
 | |
|     ### Create a Retriever using embeddings
 | |
|     # Instead of retrieving via Elasticsearch's plain BM25, we want to use vector similarity of the questions (user question vs. FAQ ones).
 | |
|     # We can use the `EmbeddingRetriever` for this purpose and specify a model that we use for the embeddings.
 | |
|     #
 | |
|     retriever = EmbeddingRetriever(
 | |
|         document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2", use_gpu=True
 | |
|     )
 | |
| 
 | |
|     # Download a csv containing some FAQ data
 | |
|     # Here: Some question-answer pairs related to COVID-19
 | |
|     doc_dir = "data/tutorial4"
 | |
|     s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/small_faq_covid.csv.zip"
 | |
|     fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
 | |
| 
 | |
|     # Get dataframe with columns "question", "answer" and some custom metadata
 | |
|     df = pd.read_csv(f"{doc_dir}/small_faq_covid.csv")
 | |
|     # Minimal cleaning
 | |
|     df.fillna(value="", inplace=True)
 | |
|     df["question"] = df["question"].apply(lambda x: x.strip())
 | |
|     print(df.head())
 | |
| 
 | |
|     # Get embeddings for our questions from the FAQs
 | |
|     questions = list(df["question"].values)
 | |
|     df["question_emb"] = retriever.embed_queries(texts=questions)
 | |
|     df = df.rename(columns={"question": "content"})
 | |
| 
 | |
|     # Convert Dataframe to list of dicts and index them in our DocumentStore
 | |
|     docs_to_index = df.to_dict(orient="records")
 | |
|     document_store.write_documents(docs_to_index)
 | |
| 
 | |
|     # Initialize a Pipeline (this time without a reader) and ask questions
 | |
| 
 | |
|     from haystack.pipelines import FAQPipeline
 | |
| 
 | |
|     pipe = FAQPipeline(retriever=retriever)
 | |
| 
 | |
|     prediction = pipe.run(query="How is the virus spreading?", params={"Retriever": {"top_k": 10}})
 | |
|     print_answers(prediction, details="medium")
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     tutorial4_faq_style_qa()
 | |
| 
 | |
| # This Haystack script was made with love by deepset in Berlin, Germany
 | |
| # Haystack: https://github.com/deepset-ai/haystack
 | |
| # deepset: https://deepset.ai/
 |