mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-12-14 16:47:06 +00:00
469 lines
16 KiB
Markdown
469 lines
16 KiB
Markdown
---
|
|
title: "STACKIT"
|
|
id: integrations-stackit
|
|
description: "STACKIT integration for Haystack"
|
|
slug: "/integrations-stackit"
|
|
---
|
|
|
|
<a id="haystack_integrations.components.generators.stackit.chat.chat_generator"></a>
|
|
|
|
## Module haystack\_integrations.components.generators.stackit.chat.chat\_generator
|
|
|
|
<a id="haystack_integrations.components.generators.stackit.chat.chat_generator.STACKITChatGenerator"></a>
|
|
|
|
### STACKITChatGenerator
|
|
|
|
Enables text generation using STACKIT generative models through their model serving service.
|
|
|
|
Users can pass any text generation parameters valid for the STACKIT Chat Completion API
|
|
directly to this component using the `generation_kwargs` parameter in `__init__` or the `generation_kwargs`
|
|
parameter in `run` method.
|
|
|
|
This component uses the ChatMessage format for structuring both input and output,
|
|
ensuring coherent and contextually relevant responses in chat-based text generation scenarios.
|
|
Details on the ChatMessage format can be found in the
|
|
[Haystack docs](https://docs.haystack.deepset.ai/docs/chatmessage)
|
|
|
|
### Usage example
|
|
```python
|
|
from haystack_integrations.components.generators.stackit import STACKITChatGenerator
|
|
from haystack.dataclasses import ChatMessage
|
|
|
|
generator = STACKITChatGenerator(model="neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8")
|
|
|
|
result = generator.run([ChatMessage.from_user("Tell me a joke.")])
|
|
print(result)
|
|
```
|
|
|
|
<a id="haystack_integrations.components.generators.stackit.chat.chat_generator.STACKITChatGenerator.__init__"></a>
|
|
|
|
#### STACKITChatGenerator.\_\_init\_\_
|
|
|
|
```python
|
|
def __init__(
|
|
model: str,
|
|
api_key: Secret = Secret.from_env_var("STACKIT_API_KEY"),
|
|
streaming_callback: Optional[StreamingCallbackT] = None,
|
|
api_base_url:
|
|
Optional[
|
|
str] = "https://api.openai-compat.model-serving.eu01.onstackit.cloud/v1",
|
|
generation_kwargs: Optional[Dict[str, Any]] = None,
|
|
*,
|
|
timeout: Optional[float] = None,
|
|
max_retries: Optional[int] = None,
|
|
http_client_kwargs: Optional[Dict[str, Any]] = None)
|
|
```
|
|
|
|
Creates an instance of STACKITChatGenerator class.
|
|
|
|
**Arguments**:
|
|
|
|
- `model`: The name of the chat completion model to use.
|
|
- `api_key`: The STACKIT API key.
|
|
- `streaming_callback`: A callback function that is called when a new token is received from the stream.
|
|
The callback function accepts StreamingChunk as an argument.
|
|
- `api_base_url`: The STACKIT API Base url.
|
|
- `generation_kwargs`: Other parameters to use for the model. These parameters are all sent directly to
|
|
the STACKIT endpoint.
|
|
Some of the supported parameters:
|
|
- `max_tokens`: The maximum number of tokens the output text can have.
|
|
- `temperature`: What sampling temperature to use. Higher values mean the model will take more risks.
|
|
Try 0.9 for more creative applications and 0 (argmax sampling) for ones with a well-defined answer.
|
|
- `top_p`: An alternative to sampling with temperature, called nucleus sampling, where the model
|
|
considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens
|
|
comprising the top 10% probability mass are considered.
|
|
- `stream`: Whether to stream back partial progress. If set, tokens will be sent as data-only server-sent
|
|
events as they become available, with the stream terminated by a data: [DONE] message.
|
|
- `safe_prompt`: Whether to inject a safety prompt before all conversations.
|
|
- `random_seed`: The seed to use for random sampling.
|
|
- `timeout`: Timeout for STACKIT client calls. If not set, it defaults to either the `OPENAI_TIMEOUT` environment
|
|
variable, or 30 seconds.
|
|
- `max_retries`: Maximum number of retries to contact STACKIT after an internal error.
|
|
If not set, it defaults to either the `OPENAI_MAX_RETRIES` environment variable, or set to 5.
|
|
- `http_client_kwargs`: A dictionary of keyword arguments to configure a custom `httpx.Client`or `httpx.AsyncClient`.
|
|
For more information, see the [HTTPX documentation](https://www.python-httpx.org/api/`client`).
|
|
|
|
<a id="haystack_integrations.components.generators.stackit.chat.chat_generator.STACKITChatGenerator.to_dict"></a>
|
|
|
|
#### STACKITChatGenerator.to\_dict
|
|
|
|
```python
|
|
def to_dict() -> Dict[str, Any]
|
|
```
|
|
|
|
Serialize this component to a dictionary.
|
|
|
|
**Returns**:
|
|
|
|
The serialized component as a dictionary.
|
|
|
|
<a id="haystack_integrations.components.generators.stackit.chat.chat_generator.STACKITChatGenerator.from_dict"></a>
|
|
|
|
#### STACKITChatGenerator.from\_dict
|
|
|
|
```python
|
|
@classmethod
|
|
def from_dict(cls, data: dict[str, Any]) -> "OpenAIChatGenerator"
|
|
```
|
|
|
|
Deserialize this component from a dictionary.
|
|
|
|
**Arguments**:
|
|
|
|
- `data`: The dictionary representation of this component.
|
|
|
|
**Returns**:
|
|
|
|
The deserialized component instance.
|
|
|
|
<a id="haystack_integrations.components.generators.stackit.chat.chat_generator.STACKITChatGenerator.run"></a>
|
|
|
|
#### STACKITChatGenerator.run
|
|
|
|
```python
|
|
@component.output_types(replies=list[ChatMessage])
|
|
def run(messages: list[ChatMessage],
|
|
streaming_callback: Optional[StreamingCallbackT] = None,
|
|
generation_kwargs: Optional[dict[str, Any]] = None,
|
|
*,
|
|
tools: Optional[ToolsType] = None,
|
|
tools_strict: Optional[bool] = None)
|
|
```
|
|
|
|
Invokes chat completion based on the provided messages and generation parameters.
|
|
|
|
**Arguments**:
|
|
|
|
- `messages`: A list of ChatMessage instances representing the input messages.
|
|
- `streaming_callback`: A callback function that is called when a new token is received from the stream.
|
|
- `generation_kwargs`: Additional keyword arguments for text generation. These parameters will
|
|
override the parameters passed during component initialization.
|
|
For details on OpenAI API parameters, see [OpenAI documentation](https://platform.openai.com/docs/api-reference/chat/create).
|
|
- `tools`: A list of Tool and/or Toolset objects, or a single Toolset for which the model can prepare calls.
|
|
If set, it will override the `tools` parameter provided during initialization.
|
|
- `tools_strict`: Whether to enable strict schema adherence for tool calls. If set to `True`, the model will follow exactly
|
|
the schema provided in the `parameters` field of the tool definition, but this may increase latency.
|
|
If set, it will override the `tools_strict` parameter set during component initialization.
|
|
|
|
**Returns**:
|
|
|
|
A dictionary with the following key:
|
|
- `replies`: A list containing the generated responses as ChatMessage instances.
|
|
|
|
<a id="haystack_integrations.components.generators.stackit.chat.chat_generator.STACKITChatGenerator.run_async"></a>
|
|
|
|
#### STACKITChatGenerator.run\_async
|
|
|
|
```python
|
|
@component.output_types(replies=list[ChatMessage])
|
|
async def run_async(messages: list[ChatMessage],
|
|
streaming_callback: Optional[StreamingCallbackT] = None,
|
|
generation_kwargs: Optional[dict[str, Any]] = None,
|
|
*,
|
|
tools: Optional[ToolsType] = None,
|
|
tools_strict: Optional[bool] = None)
|
|
```
|
|
|
|
Asynchronously invokes chat completion based on the provided messages and generation parameters.
|
|
|
|
This is the asynchronous version of the `run` method. It has the same parameters and return values
|
|
but can be used with `await` in async code.
|
|
|
|
**Arguments**:
|
|
|
|
- `messages`: A list of ChatMessage instances representing the input messages.
|
|
- `streaming_callback`: A callback function that is called when a new token is received from the stream.
|
|
Must be a coroutine.
|
|
- `generation_kwargs`: Additional keyword arguments for text generation. These parameters will
|
|
override the parameters passed during component initialization.
|
|
For details on OpenAI API parameters, see [OpenAI documentation](https://platform.openai.com/docs/api-reference/chat/create).
|
|
- `tools`: A list of Tool and/or Toolset objects, or a single Toolset for which the model can prepare calls.
|
|
If set, it will override the `tools` parameter provided during initialization.
|
|
- `tools_strict`: Whether to enable strict schema adherence for tool calls. If set to `True`, the model will follow exactly
|
|
the schema provided in the `parameters` field of the tool definition, but this may increase latency.
|
|
If set, it will override the `tools_strict` parameter set during component initialization.
|
|
|
|
**Returns**:
|
|
|
|
A dictionary with the following key:
|
|
- `replies`: A list containing the generated responses as ChatMessage instances.
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.document_embedder"></a>
|
|
|
|
## Module haystack\_integrations.components.embedders.stackit.document\_embedder
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.document_embedder.STACKITDocumentEmbedder"></a>
|
|
|
|
### STACKITDocumentEmbedder
|
|
|
|
A component for computing Document embeddings using STACKIT as model provider.
|
|
The embedding of each Document is stored in the `embedding` field of the Document.
|
|
|
|
Usage example:
|
|
```python
|
|
from haystack import Document
|
|
from haystack_integrations.components.embedders.stackit import STACKITDocumentEmbedder
|
|
|
|
doc = Document(content="I love pizza!")
|
|
|
|
document_embedder = STACKITDocumentEmbedder()
|
|
|
|
result = document_embedder.run([doc])
|
|
print(result['documents'][0].embedding)
|
|
|
|
# [0.017020374536514282, -0.023255806416273117, ...]
|
|
```
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.document_embedder.STACKITDocumentEmbedder.__init__"></a>
|
|
|
|
#### STACKITDocumentEmbedder.\_\_init\_\_
|
|
|
|
```python
|
|
def __init__(
|
|
model: str,
|
|
api_key: Secret = Secret.from_env_var("STACKIT_API_KEY"),
|
|
api_base_url:
|
|
Optional[
|
|
str] = "https://api.openai-compat.model-serving.eu01.onstackit.cloud/v1",
|
|
prefix: str = "",
|
|
suffix: str = "",
|
|
batch_size: int = 32,
|
|
progress_bar: bool = True,
|
|
meta_fields_to_embed: Optional[List[str]] = None,
|
|
embedding_separator: str = "\n",
|
|
*,
|
|
timeout: Optional[float] = None,
|
|
max_retries: Optional[int] = None,
|
|
http_client_kwargs: Optional[Dict[str, Any]] = None)
|
|
```
|
|
|
|
Creates a STACKITDocumentEmbedder component.
|
|
|
|
**Arguments**:
|
|
|
|
- `api_key`: The STACKIT API key.
|
|
- `model`: The name of the model to use.
|
|
- `api_base_url`: The STACKIT API Base url.
|
|
For more details, see STACKIT [docs](https://docs.stackit.cloud/stackit/en/basic-concepts-stackit-model-serving-319914567.html).
|
|
- `prefix`: A string to add to the beginning of each text.
|
|
- `suffix`: A string to add to the end of each text.
|
|
- `batch_size`: Number of Documents to encode at once.
|
|
- `progress_bar`: Whether to show a progress bar or not. Can be helpful to disable in production deployments to keep
|
|
the logs clean.
|
|
- `meta_fields_to_embed`: List of meta fields that should be embedded along with the Document text.
|
|
- `embedding_separator`: Separator used to concatenate the meta fields to the Document text.
|
|
- `timeout`: Timeout for STACKIT client calls. If not set, it defaults to either the `OPENAI_TIMEOUT` environment
|
|
variable, or 30 seconds.
|
|
- `max_retries`: Maximum number of retries to contact STACKIT after an internal error.
|
|
If not set, it defaults to either the `OPENAI_MAX_RETRIES` environment variable, or set to 5.
|
|
- `http_client_kwargs`: A dictionary of keyword arguments to configure a custom `httpx.Client`or `httpx.AsyncClient`.
|
|
For more information, see the [HTTPX documentation](https://www.python-httpx.org/api/`client`).
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.document_embedder.STACKITDocumentEmbedder.to_dict"></a>
|
|
|
|
#### STACKITDocumentEmbedder.to\_dict
|
|
|
|
```python
|
|
def to_dict() -> Dict[str, Any]
|
|
```
|
|
|
|
Serializes the component to a dictionary.
|
|
|
|
**Returns**:
|
|
|
|
Dictionary with serialized data.
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.document_embedder.STACKITDocumentEmbedder.from_dict"></a>
|
|
|
|
#### STACKITDocumentEmbedder.from\_dict
|
|
|
|
```python
|
|
@classmethod
|
|
def from_dict(cls, data: dict[str, Any]) -> "OpenAIDocumentEmbedder"
|
|
```
|
|
|
|
Deserializes the component from a dictionary.
|
|
|
|
**Arguments**:
|
|
|
|
- `data`: Dictionary to deserialize from.
|
|
|
|
**Returns**:
|
|
|
|
Deserialized component.
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.document_embedder.STACKITDocumentEmbedder.run"></a>
|
|
|
|
#### STACKITDocumentEmbedder.run
|
|
|
|
```python
|
|
@component.output_types(documents=list[Document], meta=dict[str, Any])
|
|
def run(documents: list[Document])
|
|
```
|
|
|
|
Embeds a list of documents.
|
|
|
|
**Arguments**:
|
|
|
|
- `documents`: A list of documents to embed.
|
|
|
|
**Returns**:
|
|
|
|
A dictionary with the following keys:
|
|
- `documents`: A list of documents with embeddings.
|
|
- `meta`: Information about the usage of the model.
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.document_embedder.STACKITDocumentEmbedder.run_async"></a>
|
|
|
|
#### STACKITDocumentEmbedder.run\_async
|
|
|
|
```python
|
|
@component.output_types(documents=list[Document], meta=dict[str, Any])
|
|
async def run_async(documents: list[Document])
|
|
```
|
|
|
|
Embeds a list of documents asynchronously.
|
|
|
|
**Arguments**:
|
|
|
|
- `documents`: A list of documents to embed.
|
|
|
|
**Returns**:
|
|
|
|
A dictionary with the following keys:
|
|
- `documents`: A list of documents with embeddings.
|
|
- `meta`: Information about the usage of the model.
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.text_embedder"></a>
|
|
|
|
## Module haystack\_integrations.components.embedders.stackit.text\_embedder
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.text_embedder.STACKITTextEmbedder"></a>
|
|
|
|
### STACKITTextEmbedder
|
|
|
|
A component for embedding strings using STACKIT as model provider.
|
|
|
|
Usage example:
|
|
```python
|
|
from haystack_integrations.components.embedders.stackit import STACKITTextEmbedder
|
|
|
|
text_to_embed = "I love pizza!"
|
|
text_embedder = STACKITTextEmbedder()
|
|
print(text_embedder.run(text_to_embed))
|
|
```
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.text_embedder.STACKITTextEmbedder.__init__"></a>
|
|
|
|
#### STACKITTextEmbedder.\_\_init\_\_
|
|
|
|
```python
|
|
def __init__(
|
|
model: str,
|
|
api_key: Secret = Secret.from_env_var("STACKIT_API_KEY"),
|
|
api_base_url:
|
|
Optional[
|
|
str] = "https://api.openai-compat.model-serving.eu01.onstackit.cloud/v1",
|
|
prefix: str = "",
|
|
suffix: str = "",
|
|
*,
|
|
timeout: Optional[float] = None,
|
|
max_retries: Optional[int] = None,
|
|
http_client_kwargs: Optional[Dict[str, Any]] = None)
|
|
```
|
|
|
|
Creates a STACKITTextEmbedder component.
|
|
|
|
**Arguments**:
|
|
|
|
- `api_key`: The STACKIT API key.
|
|
- `model`: The name of the STACKIT embedding model to be used.
|
|
- `api_base_url`: The STACKIT API Base url.
|
|
For more details, see STACKIT [docs](https://docs.stackit.cloud/stackit/en/basic-concepts-stackit-model-serving-319914567.html).
|
|
- `prefix`: A string to add to the beginning of each text.
|
|
- `suffix`: A string to add to the end of each text.
|
|
- `timeout`: Timeout for STACKIT client calls. If not set, it defaults to either the `OPENAI_TIMEOUT` environment
|
|
variable, or 30 seconds.
|
|
- `max_retries`: Maximum number of retries to contact STACKIT after an internal error.
|
|
If not set, it defaults to either the `OPENAI_MAX_RETRIES` environment variable, or set to 5.
|
|
- `http_client_kwargs`: A dictionary of keyword arguments to configure a custom `httpx.Client`or `httpx.AsyncClient`.
|
|
For more information, see the [HTTPX documentation](https://www.python-httpx.org/api/`client`).
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.text_embedder.STACKITTextEmbedder.to_dict"></a>
|
|
|
|
#### STACKITTextEmbedder.to\_dict
|
|
|
|
```python
|
|
def to_dict() -> Dict[str, Any]
|
|
```
|
|
|
|
Serializes the component to a dictionary.
|
|
|
|
**Returns**:
|
|
|
|
Dictionary with serialized data.
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.text_embedder.STACKITTextEmbedder.from_dict"></a>
|
|
|
|
#### STACKITTextEmbedder.from\_dict
|
|
|
|
```python
|
|
@classmethod
|
|
def from_dict(cls, data: dict[str, Any]) -> "OpenAITextEmbedder"
|
|
```
|
|
|
|
Deserializes the component from a dictionary.
|
|
|
|
**Arguments**:
|
|
|
|
- `data`: Dictionary to deserialize from.
|
|
|
|
**Returns**:
|
|
|
|
Deserialized component.
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.text_embedder.STACKITTextEmbedder.run"></a>
|
|
|
|
#### STACKITTextEmbedder.run
|
|
|
|
```python
|
|
@component.output_types(embedding=list[float], meta=dict[str, Any])
|
|
def run(text: str)
|
|
```
|
|
|
|
Embeds a single string.
|
|
|
|
**Arguments**:
|
|
|
|
- `text`: Text to embed.
|
|
|
|
**Returns**:
|
|
|
|
A dictionary with the following keys:
|
|
- `embedding`: The embedding of the input text.
|
|
- `meta`: Information about the usage of the model.
|
|
|
|
<a id="haystack_integrations.components.embedders.stackit.text_embedder.STACKITTextEmbedder.run_async"></a>
|
|
|
|
#### STACKITTextEmbedder.run\_async
|
|
|
|
```python
|
|
@component.output_types(embedding=list[float], meta=dict[str, Any])
|
|
async def run_async(text: str)
|
|
```
|
|
|
|
Asynchronously embed a single string.
|
|
|
|
This is the asynchronous version of the `run` method. It has the same parameters and return values
|
|
but can be used with `await` in async code.
|
|
|
|
**Arguments**:
|
|
|
|
- `text`: Text to embed.
|
|
|
|
**Returns**:
|
|
|
|
A dictionary with the following keys:
|
|
- `embedding`: The embedding of the input text.
|
|
- `meta`: Information about the usage of the model.
|