2023-11-30 16:01:37 +01:00
2023-11-29 09:22:27 +01:00
2023-11-06 13:26:26 +01:00
2023-11-24 14:48:43 +01:00
2023-11-24 14:48:43 +01:00
2023-04-04 10:10:44 +02:00
2023-01-16 12:34:50 +01:00
2021-10-12 10:22:41 +02:00
2023-11-30 16:01:37 +01:00
2023-11-29 10:58:10 +01:00

Haystack
CI/CD Tests code style - Black types - Mypy Coverage Status
Docs Website
Package PyPI PyPI - Downloads PyPI - Python Version GitHub License Compliance
Meta Discord Twitter Follow

Haystack is an end-to-end LLM framework that enables you to build applications powered by LLMs, Transformer models, vector search and more. Whether you want to perform retrieval-augmented generation (RAG), documentation search, question answering or answer generation, you can use state-of-the-art embedding models and LLMs with Haystack to build end-to-end NLP applications to solve your use case.

Quickstart

Haystack is built around the concept of pipelines. A pipeline is a powerful structure that performs an NLP task. It's made up of components connected together. For example, you can connect a retriever and a generator to build a Generative Question Answering pipeline that uses your own data.

First, run the minimal Haystack installation:

pip install haystack-ai

👉 To build a minimal RAG pipeline that uses GPT-4 on your own data, use the RAG Pipeline Recipe

Core Concepts

⚛️ Components: Each Component achieves one thing. Such as preprocessing documents, retrieving documents, using specific language models to answer questions, and so on. Components can .connect() to each other to form a complete pipeline.

🏃‍♀️ Pipelines: This is the standard Haystack structure that builds on top of your data to perform various NLP tasks such as retrieval augmented generation, question answering and more. Pipelines in Haystack are Directed Multigraphs composed of components. Components can receive inputs from other components and produce outputs that can be forwarded to other components.

🗂️ DocumentStores: A DocumentStore is database where you store your text data for Haystack to access. Haystack DocumentStores are available with ElasticSearch, Opensearch, Weaviate, Pinecone, FAISS and more. For a full list of available DocumentStores, check out our documentation.

What to Build with Haystack

  • Build retrieval augmented generation (RAG) by making use of one of the available vector databases and customizing your LLM interaction, the sky is the limit 🚀
  • Perform Question Answering in natural language to find granular answers in your documents.
  • Perform semantic search and retrieve documents according to meaning.
  • Build applications that can make complex decisions making to answer complex queries: such as systems that can resolve complex customer queries, do knowledge search on many disconnected resources and so on.
  • Use off-the-shelf models or fine-tune them to your data.
  • Use user feedback to evaluate, benchmark, and continuously improve your models.

Features

  • Latest models: Haystack allows you to use and compare models available from OpenAI, Cohere and Hugging Face, as well as your own local models or models hosted on SageMaker. Use the latest LLMs or Transformer-based models (for example: BERT, RoBERTa, MiniLM).
  • Modular: Multiple choices to fit your tech stack and use case. A wide choice of DocumentStores to store your data, file conversion tools and more
  • Open: Integrated with Hugging Face's model hub, OpenAI, Cohere and various Azure services.
  • Scalable: Scale to millions of docs using retrievers and production-scale components like Elasticsearch and a fastAPI REST API.
  • End-to-End: All tooling in one place: file conversion, cleaning, splitting, training, eval, inference, labeling, and more.
  • Customizable: Fine-tune models to your domain or implement your custom Nodes.
  • Continuous Learning: Collect new training data from user feedback in production & improve your models continuously.

Resources

📒 Docs Components, Pipeline Nodes, Guides, API Reference
💾 Installation How to install Haystack
🎓 Tutorials See what Haystack can do with our Notebooks & Scripts
🎉 Haystack Extras A repository that lists extra Haystack packages and components that can be installed separately.
🔰 Demos A repository containing Haystack demo applications with Docker Compose and a REST API
🖖 Community Discord, 𝕏 (Twitter), Stack Overflow, GitHub Discussions
💙 Contributing We welcome all contributions!
📊 Benchmarks Speed & Accuracy of Retriever, Readers and DocumentStores
🔭 Roadmap Public roadmap of Haystack
📰 Blog Learn about the latest with Haystack and NLP
☎️ Jobs We're hiring! Have a look at our open positions

💾 Installation

For a detailed installation guide see the official documentation. There youll find instructions for custom installations handling Windows and Apple Silicon.

Basic Installation

Use pip to install a basic version of Haystack's latest release:

pip install farm-haystack

This command installs everything needed for basic Pipelines that use an in-memory DocumentStore and external LLM provider (e.g. OpenAI).

Full Installation

To use more advanced features, like certain DocumentStores, inference with local transformer models, FileConverters, OCR, or Ray, you need to install further dependencies. The following command installs the latest release of Haystack and all its dependencies:

pip install 'farm-haystack[all]' ## or 'all-gpu' for the GPU-enabled dependencies

If you want to install only the dependencies needed for model inference on your local hardware (not remote API endpoints), such as torch and sentence-transformers, you can use the following command:

pip install 'farm-haystack[inference]' ## installs torch, sentence-transformers, sentencepiece, and huggingface-hub

If you want to try out the newest features that are not in an official release yet, you can install the unstable version from the main branch with the following command:

pip install git+https://github.com/deepset-ai/haystack.git@main#egg=farm-haystack

To be able to make changes to Haystack code, first of all clone this repo:

git clone https://github.com/deepset-ai/haystack.git

Then move into the cloned folder and install the project with pip, including the development dependencies:

cd haystack && pip install -e '.[dev]'

If you want to contribute to the Haystack repo, check our Contributor Guidelines first.

See the list of dependencies to check which ones you want to install (for example, [all], [dev], or other).

Installing the REST API

Haystack comes packaged with a REST API so that you can deploy it as a service. Run the following command from the root directory of the Haystack repo to install REST_API:

pip install rest_api/

You can find out more about our PyPi package on our PyPi page.

🔰Demos

You can find some of our hosted demos with instructions to run them locally too on our haystack-demos repository

💫 Reduce Hallucinations with Retrieval Augmentation - Generative QA with LLMs

🐥 Should I follow? - Summarizing tweets with LLMs

🌎 Explore The World - Extractive Question Answering

🖖 Community

If you have a feature request or a bug report, feel free to open an issue in Github. We regularly check these and you can expect a quick response. If you'd like to discuss a topic, or get more general advice on how to make Haystack work for your project, you can start a thread in Github Discussions or our Discord channel. We also check 𝕏 (Twitter) and Stack Overflow.

💙 Contributing

We are very open to the community's contributions - be it a quick fix of a typo, or a completely new feature! You don't need to be a Haystack expert to provide meaningful improvements. To learn how to get started, check out our Contributor Guidelines first.

Who Uses Haystack

Here's a list of projects and companies using Haystack. Want to add yours? Open a PR, add it to the list and let the world know that you use Haystack!

Description
AI orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. With advanced retrieval methods, it's best suited for building RAG, question answering, semantic search or conversational agent chatbots.
Readme Apache-2.0 Cite this repository 122 MiB
Languages
MDX 50.5%
Python 47.8%
HTML 0.9%
JavaScript 0.6%