mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-28 03:12:54 +00:00

* refactor: improve support for dataclasses * refactor: refactor class init * refactor: remove unused import * refactor: testing 3.7 diffs * refactor: checking meta where is Optional * refactor: reverting some changes on 3.7 * refactor: remove unused imports * build: manual pre-commit run * doc: run doc pre-commit manually * refactor: post initialization hack for 3.7-3.10 compat. TODO: investigate another method to improve 3.7 compatibility. * doc: force pre-commit * refactor: refactored for both Python 3.7 and 3.9 * docs: manually run pre-commit hooks * docs: run api docs manually * docs: fix wrong comment * refactor: change no type-checked test code * docs: update primitives * docs: api documentation * docs: api documentation * refactor: minor test refactoring * refactor: remova unused enumeration on test * refactor: remove unneeded dir in gitignore * refactor: exclude all private fields and change meta def * refactor: add pydantic comment * refactor : fix for mypy on Python 3.7 * refactor: revert custom init * docs: update docs to new pydoc-markdown style * Update test/nodes/test_generator.py Co-authored-by: Sara Zan <sarazanzo94@gmail.com>
138 lines
6.2 KiB
Python
138 lines
6.2 KiB
Python
import os
|
|
import sys
|
|
from typing import List
|
|
|
|
import pytest
|
|
|
|
from haystack.schema import Document
|
|
from haystack.nodes.answer_generator import Seq2SeqGenerator
|
|
from haystack.pipelines import TranslationWrapperPipeline, GenerativeQAPipeline
|
|
|
|
|
|
# Keeping few (retriever,document_store) combination to reduce test time
|
|
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="Causes OOM on windows github runner")
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
@pytest.mark.parametrize("retriever,document_store", [("embedding", "memory")], indirect=True)
|
|
def test_generator_pipeline_with_translator(
|
|
document_store, retriever, rag_generator, en_to_de_translator, de_to_en_translator, docs_with_true_emb
|
|
):
|
|
document_store.write_documents(docs_with_true_emb)
|
|
query = "Was ist die Hauptstadt der Bundesrepublik Deutschland?"
|
|
base_pipeline = GenerativeQAPipeline(retriever=retriever, generator=rag_generator)
|
|
pipeline = TranslationWrapperPipeline(
|
|
input_translator=de_to_en_translator, output_translator=en_to_de_translator, pipeline=base_pipeline
|
|
)
|
|
output = pipeline.run(query=query, params={"Generator": {"top_k": 2}, "Retriever": {"top_k": 1}})
|
|
answers = output["answers"]
|
|
assert len(answers) == 2
|
|
assert "berlin" in answers[0].answer
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
def test_rag_token_generator(rag_generator, docs_with_true_emb):
|
|
query = "What is capital of the Germany?"
|
|
generated_docs = rag_generator.predict(query=query, documents=docs_with_true_emb, top_k=1)
|
|
answers = generated_docs["answers"]
|
|
assert len(answers) == 1
|
|
assert "berlin" in answers[0].answer
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
|
|
@pytest.mark.parametrize("retriever", ["embedding"], indirect=True)
|
|
def test_generator_pipeline(document_store, retriever, rag_generator, docs_with_true_emb):
|
|
document_store.write_documents(docs_with_true_emb)
|
|
query = "What is capital of the Germany?"
|
|
pipeline = GenerativeQAPipeline(retriever=retriever, generator=rag_generator)
|
|
output = pipeline.run(query=query, params={"Generator": {"top_k": 2}, "Retriever": {"top_k": 1}})
|
|
answers = output["answers"]
|
|
assert len(answers) == 2
|
|
assert "berlin" in answers[0].answer
|
|
|
|
|
|
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="Causes OOM on windows github runner")
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
|
|
@pytest.mark.parametrize("retriever", ["retribert", "dpr_lfqa"], indirect=True)
|
|
@pytest.mark.parametrize("lfqa_generator", ["yjernite/bart_eli5", "vblagoje/bart_lfqa"], indirect=True)
|
|
@pytest.mark.embedding_dim(128)
|
|
def test_lfqa_pipeline(document_store, retriever, lfqa_generator, docs_with_true_emb):
|
|
# reuse existing DOCS but regenerate embeddings with retribert
|
|
docs: List[Document] = []
|
|
for d in docs_with_true_emb:
|
|
docs.append(Document(content=d.content))
|
|
document_store.write_documents(docs)
|
|
document_store.update_embeddings(retriever)
|
|
query = "Tell me about Berlin?"
|
|
pipeline = GenerativeQAPipeline(generator=lfqa_generator, retriever=retriever)
|
|
output = pipeline.run(query=query, params={"top_k": 1})
|
|
answers = output["answers"]
|
|
assert len(answers) == 1, answers
|
|
assert "Germany" in answers[0].answer, answers[0].answer
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
|
|
@pytest.mark.parametrize("retriever", ["retribert"], indirect=True)
|
|
@pytest.mark.embedding_dim(128)
|
|
def test_lfqa_pipeline_unknown_converter(document_store, retriever, docs_with_true_emb):
|
|
# reuse existing DOCS but regenerate embeddings with retribert
|
|
docs: List[Document] = []
|
|
for d in docs_with_true_emb:
|
|
docs.append(Document(content=d.content))
|
|
document_store.write_documents(docs)
|
|
document_store.update_embeddings(retriever)
|
|
seq2seq = Seq2SeqGenerator(model_name_or_path="patrickvonplaten/t5-tiny-random")
|
|
query = "Tell me about Berlin?"
|
|
pipeline = GenerativeQAPipeline(retriever=retriever, generator=seq2seq)
|
|
|
|
# raises exception as we don't have converter for "patrickvonplaten/t5-tiny-random" in Seq2SeqGenerator
|
|
with pytest.raises(Exception) as exception_info:
|
|
output = pipeline.run(query=query, params={"top_k": 1})
|
|
assert "doesn't have input converter registered for patrickvonplaten/t5-tiny-random" in str(exception_info.value)
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.generator
|
|
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
|
|
@pytest.mark.parametrize("retriever", ["retribert"], indirect=True)
|
|
@pytest.mark.embedding_dim(128)
|
|
def test_lfqa_pipeline_invalid_converter(document_store, retriever, docs_with_true_emb):
|
|
# reuse existing DOCS but regenerate embeddings with retribert
|
|
docs: List[Document] = []
|
|
for d in docs_with_true_emb:
|
|
docs.append(Document(content=d.content))
|
|
document_store.write_documents(docs)
|
|
document_store.update_embeddings(retriever)
|
|
|
|
class _InvalidConverter:
|
|
def __call__(self, some_invalid_para: str, another_invalid_param: str) -> None:
|
|
pass
|
|
|
|
seq2seq = Seq2SeqGenerator(
|
|
model_name_or_path="patrickvonplaten/t5-tiny-random", input_converter=_InvalidConverter()
|
|
)
|
|
query = "This query will fail due to InvalidConverter used"
|
|
pipeline = GenerativeQAPipeline(retriever=retriever, generator=seq2seq)
|
|
|
|
# raises exception as we are using invalid method signature in _InvalidConverter
|
|
with pytest.raises(Exception) as exception_info:
|
|
output = pipeline.run(query=query, params={"top_k": 1})
|
|
assert "does not have a valid __call__ method signature" in str(exception_info.value)
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("OPENAI_API_KEY", None),
|
|
reason="No OpenAI API key provided. Please export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
|
)
|
|
def test_openai_answer_generator(openai_generator, docs):
|
|
prediction = openai_generator.predict(query="Who lives in Berlin?", documents=docs, top_k=1)
|
|
assert len(prediction["answers"]) == 1
|
|
assert "Carla" in prediction["answers"][0].answer
|