mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-25 01:40:22 +00:00

* Format doc classifier usage example * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
109 lines
4.3 KiB
Markdown
109 lines
4.3 KiB
Markdown
<a name="base"></a>
|
|
# Module base
|
|
|
|
<a name="base.BaseDocumentClassifier"></a>
|
|
## BaseDocumentClassifier Objects
|
|
|
|
```python
|
|
class BaseDocumentClassifier(BaseComponent)
|
|
```
|
|
|
|
<a name="base.BaseDocumentClassifier.timing"></a>
|
|
#### timing
|
|
|
|
```python
|
|
| timing(fn, attr_name)
|
|
```
|
|
|
|
Wrapper method used to time functions.
|
|
|
|
<a name="transformers"></a>
|
|
# Module transformers
|
|
|
|
<a name="transformers.TransformersDocumentClassifier"></a>
|
|
## TransformersDocumentClassifier Objects
|
|
|
|
```python
|
|
class TransformersDocumentClassifier(BaseDocumentClassifier)
|
|
```
|
|
|
|
Transformer based model for document classification using the HuggingFace's transformers framework
|
|
(https://github.com/huggingface/transformers).
|
|
While the underlying model can vary (BERT, Roberta, DistilBERT ...), the interface remains the same.
|
|
This node classifies documents and adds the output from the classification step to the document's meta data.
|
|
The meta field of the document is a dictionary with the following format:
|
|
``'meta': {'name': '450_Baelor.txt', 'classification': {'label': 'neutral', 'probability' = 0.9997646, ...} }``
|
|
|
|
With this document_classifier, you can directly get predictions via predict()
|
|
|
|
**Usage example:**
|
|
```python
|
|
| ...
|
|
| retriever = ElasticsearchRetriever(document_store=document_store)
|
|
| document_classifier = TransformersDocumentClassifier(model_name_or_path="bhadresh-savani/distilbert-base-uncased-emotion")
|
|
| p = Pipeline()
|
|
| p.add_node(component=retriever, name="Retriever", inputs=["Query"])
|
|
| p.add_node(component=document_classifier, name="Classifier", inputs=["Retriever"])
|
|
| res = p.run(
|
|
| query="Who is the father of Arya Stark?",
|
|
| params={"Retriever": {"top_k": 10}}
|
|
| )
|
|
|
|
|
| # print the classification results
|
|
| print_documents(res, max_text_len=100, print_meta=True)
|
|
| # or access the predicted class label directly
|
|
| res["documents"][0].to_dict()["meta"]["classification"]["label"]
|
|
```
|
|
|
|
<a name="transformers.TransformersDocumentClassifier.__init__"></a>
|
|
#### \_\_init\_\_
|
|
|
|
```python
|
|
| __init__(model_name_or_path: str = "bhadresh-savani/distilbert-base-uncased-emotion", model_version: Optional[str] = None, tokenizer: Optional[str] = None, use_gpu: int = 0, return_all_scores: bool = False, task: str = 'text-classification', labels: Optional[List[str]] = None)
|
|
```
|
|
|
|
Load a text classification model from Transformers.
|
|
Available models for the task of text-classification include:
|
|
- ``'bhadresh-savani/distilbert-base-uncased-emotion'``
|
|
- ``'Hate-speech-CNERG/dehatebert-mono-english'``
|
|
|
|
Available models for the task of zero-shot-classification include:
|
|
- ``'valhalla/distilbart-mnli-12-3'``
|
|
- ``'cross-encoder/nli-distilroberta-base'``
|
|
|
|
See https://huggingface.co/models for full list of available models.
|
|
Filter for text classification models: https://huggingface.co/models?pipeline_tag=text-classification&sort=downloads
|
|
Filter for zero-shot classification models (NLI): https://huggingface.co/models?pipeline_tag=zero-shot-classification&sort=downloads&search=nli
|
|
|
|
**Arguments**:
|
|
|
|
- `model_name_or_path`: Directory of a saved model or the name of a public model e.g. 'bhadresh-savani/distilbert-base-uncased-emotion'.
|
|
See https://huggingface.co/models for full list of available models.
|
|
- `model_version`: The version of model to use from the HuggingFace model hub. Can be tag name, branch name, or commit hash.
|
|
- `tokenizer`: Name of the tokenizer (usually the same as model)
|
|
- `use_gpu`: If < 0, then use cpu. If >= 0, this is the ordinal of the gpu to use
|
|
- `return_all_scores`: Whether to return all prediction scores or just the one of the predicted class. Only used for task 'text-classification'.
|
|
- `task`: 'text-classification' or 'zero-shot-classification'
|
|
- `labels`: Only used for task 'zero-shot-classification'. List of string defining class labels, e.g.,
|
|
["positive", "negative"] otherwise None. Given a LABEL, the sequence fed to the model is "<cls> sequence to
|
|
classify <sep> This example is LABEL . <sep>" and the model predicts whether that sequence is a contradiction
|
|
or an entailment.
|
|
|
|
<a name="transformers.TransformersDocumentClassifier.predict"></a>
|
|
#### predict
|
|
|
|
```python
|
|
| predict(documents: List[Document]) -> List[Document]
|
|
```
|
|
|
|
Returns documents containing classification result in meta field
|
|
|
|
**Arguments**:
|
|
|
|
- `documents`: List of Document to classify
|
|
|
|
**Returns**:
|
|
|
|
List of Document enriched with meta information
|
|
|