haystack/docs/v0.4.0/_src/benchmarks/retriever_speed.json
Markus Paff 2531c8e061
Add versioning docs (#495)
* add time and perf benchmark for es

* Add retriever benchmarking

* Add Reader benchmarking

* add nq to squad conversion

* add conversion stats

* clean benchmarks

* Add link to dataset

* Update imports

* add first support for neg psgs

* Refactor test

* set max_seq_len

* cleanup benchmark

* begin retriever speed benchmarking

* Add support for retriever query index benchmarking

* improve reader eval, retriever speed benchmarking

* improve retriever speed benchmarking

* Add retriever accuracy benchmark

* Add neg doc shuffling

* Add top_n

* 3x speedup of SQL. add postgres docker run. make shuffle neg a param. add more logging

* Add models to sweep

* add option for faiss index type

* remove unneeded line

* change faiss to faiss_flat

* begin automatic benchmark script

* remove existing postgres docker for benchmarking

* Add data processing scripts

* Remove shuffle in script bc data already shuffled

* switch hnsw setup from 256 to 128

* change es similarity to dot product by default

* Error includes stack trace

* Change ES default timeout

* remove delete_docs() from timing for indexing

* Add support for website export

* update website on push to benchmarks

* add complete benchmarks results

* new json format

* removed NaN as is not a valid json token

* versioning for docs

* unsaved changes

* cleaning

* cleaning

* Edit format of benchmarks data

* update also jsons in v0.4.0

Co-authored-by: brandenchan <brandenchan@icloud.com>
Co-authored-by: deepset <deepset@Crenolape.localdomain>
Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
2020-10-19 11:46:51 +02:00

99 lines
2.7 KiB
JSON

{
"chart_type": "LineChart",
"title": "Retriever Speed",
"subtitle": "Query Speed at different number of docs",
"description": "Here you can see how the query speed of different Retriever / DocumentStore combinations scale as the number of documents increases. The set up is the same as the above querying benchmark except that a varying number of negative documents are used to fill the document store.",
"columns": [
"n_docs",
"BM25 / ElasticSearch",
"DPR / ElasticSearch",
"DPR / FAISS (flat)",
"DPR / FAISS (HSNW)"
],
"axis": [
{ "x": "Number of docs", "y": "Docs/sec" }
],
"data":
[
{
"model": "DPR / ElasticSearch",
"n_docs": 1000,
"query_speed": 40.802
},
{
"model": "DPR / ElasticSearch",
"n_docs": 10000,
"query_speed": 27.006999999999998
},
{
"model": "DPR / ElasticSearch",
"n_docs": 100000,
"query_speed": 6.5360000000000005
},
{
"model": "DPR / ElasticSearch",
"n_docs": 500000,
"query_speed": 1.514
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 1000,
"query_speed": 40.048
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 10000,
"query_speed": 23.976999999999997
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 100000,
"query_speed": 5.044
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 500000,
"query_speed": 1.091
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 1000,
"query_speed": 232.97799999999998
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 10000,
"query_speed": 167.81
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 100000,
"query_speed": 162.996
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 500000,
"query_speed": 95.491
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 1000,
"query_speed": 37.884
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 10000,
"query_speed": 33.421
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 100000,
"query_speed": 12.815
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 500000,
"query_speed": 3.259
}
]
}