haystack/test/preview/components/audio/test_whisper_local.py
Silvano Cerza 7287657f0e
refactor: Rename Document's text field to content (#6181)
* Rework Document serialisation

Make Document backward compatible

Fix InMemoryDocumentStore filters

Fix InMemoryDocumentStore.bm25_retrieval

Add release notes

Fix pylint failures

Enhance Document kwargs handling and docstrings

Rename Document's text field to content

Fix e2e tests

Fix SimilarityRanker tests

Fix typo in release notes

Rename Document's metadata field to meta (#6183)

* fix bugs

* make linters happy

* fix

* more fix

* match regex

---------

Co-authored-by: Massimiliano Pippi <mpippi@gmail.com>
2023-10-31 12:44:04 +01:00

171 lines
6.8 KiB
Python

import sys
from pathlib import Path
from unittest.mock import patch, MagicMock
import pytest
import torch
from haystack.preview.dataclasses import Document
from haystack.preview.components.audio import LocalWhisperTranscriber
SAMPLES_PATH = Path(__file__).parent.parent.parent / "test_files"
class TestLocalWhisperTranscriber:
@pytest.mark.unit
def test_init(self):
transcriber = LocalWhisperTranscriber(
model_name_or_path="large-v2"
) # Doesn't matter if it's huge, the model is not loaded in init.
assert transcriber.model_name == "large-v2"
assert transcriber.device == torch.device("cpu")
assert transcriber._model is None
@pytest.mark.unit
def test_init_wrong_model(self):
with pytest.raises(ValueError, match="Model name 'whisper-1' not recognized"):
LocalWhisperTranscriber(model_name_or_path="whisper-1")
@pytest.mark.unit
def test_to_dict(self):
transcriber = LocalWhisperTranscriber()
data = transcriber.to_dict()
assert data == {
"type": "LocalWhisperTranscriber",
"init_parameters": {"model_name_or_path": "large", "device": "cpu", "whisper_params": {}},
}
@pytest.mark.unit
def test_to_dict_with_custom_init_parameters(self):
transcriber = LocalWhisperTranscriber(
model_name_or_path="tiny",
device="cuda",
whisper_params={"return_segments": True, "temperature": [0.1, 0.6, 0.8]},
)
data = transcriber.to_dict()
assert data == {
"type": "LocalWhisperTranscriber",
"init_parameters": {
"model_name_or_path": "tiny",
"device": "cuda",
"whisper_params": {"return_segments": True, "temperature": [0.1, 0.6, 0.8]},
},
}
@pytest.mark.unit
def test_warmup(self):
with patch("haystack.preview.components.audio.whisper_local.whisper") as mocked_whisper:
transcriber = LocalWhisperTranscriber(model_name_or_path="large-v2")
mocked_whisper.load_model.assert_not_called()
transcriber.warm_up()
mocked_whisper.load_model.assert_called_once_with("large-v2", device=torch.device(type="cpu"))
@pytest.mark.unit
def test_warmup_doesnt_reload(self):
with patch("haystack.preview.components.audio.whisper_local.whisper") as mocked_whisper:
transcriber = LocalWhisperTranscriber(model_name_or_path="large-v2")
transcriber.warm_up()
transcriber.warm_up()
mocked_whisper.load_model.assert_called_once()
@pytest.mark.unit
def test_run_with_path(self):
comp = LocalWhisperTranscriber(model_name_or_path="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
results = comp.run(audio_files=[SAMPLES_PATH / "audio" / "this is the content of the document.wav"])
expected = Document(
content="test transcription",
meta={
"audio_file": SAMPLES_PATH / "audio" / "this is the content of the document.wav",
"other_metadata": ["other", "meta", "data"],
},
)
assert results["documents"] == [expected]
@pytest.mark.unit
def test_run_with_str(self):
comp = LocalWhisperTranscriber(model_name_or_path="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
results = comp.run(
audio_files=[str((SAMPLES_PATH / "audio" / "this is the content of the document.wav").absolute())]
)
expected = Document(
content="test transcription",
meta={
"audio_file": str((SAMPLES_PATH / "audio" / "this is the content of the document.wav").absolute()),
"other_metadata": ["other", "meta", "data"],
},
)
assert results["documents"] == [expected]
@pytest.mark.unit
def test_transcribe(self):
comp = LocalWhisperTranscriber(model_name_or_path="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
results = comp.transcribe(audio_files=[SAMPLES_PATH / "audio" / "this is the content of the document.wav"])
expected = Document(
content="test transcription",
meta={
"audio_file": SAMPLES_PATH / "audio" / "this is the content of the document.wav",
"other_metadata": ["other", "meta", "data"],
},
)
assert results == [expected]
@pytest.mark.unit
def test_transcribe_stream(self):
comp = LocalWhisperTranscriber(model_name_or_path="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
results = comp.transcribe(
audio_files=[open(SAMPLES_PATH / "audio" / "this is the content of the document.wav", "rb")]
)
expected = Document(
content="test transcription",
meta={"audio_file": "<<binary stream>>", "other_metadata": ["other", "meta", "data"]},
)
assert results == [expected]
@pytest.mark.integration
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="ffmpeg not installed on Windows CI")
def test_whisper_local_transcriber(self, preview_samples_path):
comp = LocalWhisperTranscriber(model_name_or_path="medium", whisper_params={"language": "english"})
comp.warm_up()
output = comp.run(
audio_files=[
preview_samples_path / "audio" / "this is the content of the document.wav",
str((preview_samples_path / "audio" / "the context for this answer is here.wav").absolute()),
open(preview_samples_path / "audio" / "answer.wav", "rb"),
]
)
docs = output["documents"]
assert len(docs) == 3
assert docs[0].content.strip().lower() == "this is the content of the document."
assert preview_samples_path / "audio" / "this is the content of the document.wav" == docs[0].meta["audio_file"]
assert docs[1].content.strip().lower() == "the context for this answer is here."
assert (
str((preview_samples_path / "audio" / "the context for this answer is here.wav").absolute())
== docs[1].meta["audio_file"]
)
assert docs[2].content.strip().lower() == "answer."
assert docs[2].meta["audio_file"] == "<<binary stream>>"