haystack/tutorial.ipynb
2019-11-14 11:42:51 +01:00

200 lines
5.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"11/11/2019 18:43:25 - INFO - root - Using localhost sqlite as the database backend. as Database not configured. Add a qa_config.py file in the Python path with DATABASE_URL set.Continuing with the default sqlite on localhost.\n",
"I1111 18:43:25.533496 140652943304512 file_utils.py:39] PyTorch version 1.3.0 available.\n",
"I1111 18:43:25.611577 140652943304512 modeling_xlnet.py:194] Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .\n"
]
}
],
"source": [
"from farm_haystack.reader.adaptive_model import FARMReader\n",
"from farm_haystack.retriever.tfidf import TfidfRetriever\n",
"from farm_haystack import Finder\n",
"from farm_haystack.indexing.io import write_documents_to_db, fetch_archive_from_http\n",
"from farm_haystack.indexing.cleaning import clean_wiki_text\n",
"from farm_haystack.utils import print_answers"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I1111 18:43:25.834958 140652943304512 io.py:46] Fetching from https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip to `data/article_txt_got`\n",
"\r",
" 0%| | 0/1167348 [00:00<?, ?B/s]\r",
"100%|██████████| 1167348/1167348 [00:00<00:00, 13662984.26B/s]\n",
"I1111 18:43:26.548232 140652943304512 io.py:31] Wrote 517 to DB\n"
]
}
],
"source": [
"# Init a database (default: sqllite)\n",
"from farm_haystack.database import db\n",
"db.create_all()\n",
"\n",
"# Let's first get some documents that we want to query\n",
"# Here: Wikipedia articles for Game of Thrones\n",
"\n",
"doc_dir = \"data/article_txt_got\"\n",
"s3_url = \"https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip\"\n",
"\n",
"fetch_archive_from_http(url=s3_url, output_dir=doc_dir)\n",
"\n",
"# We supply a function to clean the docs and write them afterwards to our DB\n",
"write_documents_to_db(document_dir=doc_dir, clean_func=clean_wiki_text)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I1111 18:43:26.589386 140652943304512 tfidf.py:68] Found 517 candidates in DB\n"
]
}
],
"source": [
"# A retriever identifies the k most promising chunks of text that might contain the answer for our question\n",
"# Retrievers use some simple but fast algorithm, here: TF-IDF\n",
"\n",
"retriever = TfidfRetriever()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [],
"source": [
"# A reader scans the text chunks in detail and extracts the k best answers\n",
"# Reader use more powerful but slower deep learning models, here: a BERT QA model trained via FARM on Squad 2.0\n",
"reader = FARMReader(model_dir=\"../FARM/saved_models/bert-english-qa-large\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [],
"source": [
"# The Finder sticks together retriever and retriever in a pipeline to answer our actual questions \n",
"\n",
"finder = Finder(reader, retriever)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [],
"source": [
"# Voilá! Ask a question!\n",
"\n",
"#prediction = finder.get_answers(question=\"Who created the Dothraki vocabulary?\", top_k_reader=5)\n",
"#prediction = finder.get_answers(question=\"Who is the sister of Sansa?\", top_k_reader=5)\n",
"prediction = finder.get_answers(question=\"Who is the father of Arya Stark?\", top_k_reader=3, top_k_retriever=5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"print_answers(prediction, details=\"minimal\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}