mirror of
				https://github.com/deepset-ai/haystack.git
				synced 2025-10-31 17:59:27 +00:00 
			
		
		
		
	 6a1b6b1ae3
			
		
	
	
		6a1b6b1ae3
		
			
		
	
	
	
	
		
			
			* feat: Update ConversationalAgent * Add Tools * Add test * Change default params * fix tests * Fix circular import error * Update conversational-agent prompt * Add conversational-agent-without-tools to legacy list * Add warning to add tools to conversational agent * Add callable tools * Add example script * Fix linter errors * Update ConversationalAgent depending on the existance of tools * Initialize the base Agent with different arguments when there's tool * Inject memory to the prompt in both cases, update prompts accordingly * Override the add_tools method to prevent adding tools to ConversationalAgent without tools * Update test * Fix linter error * Remove unused import * Update docstrings and api reference * Fix imports and doc string code snippet * docstrings update * Update conversational.py * Mock PromptNode * Prevent circular import error * Add max_steps to the ConversationalAgent * Update resolver description * Add prompt_template as parameter * Change docstring --------- Co-authored-by: Darja Fokina <daria.f93@gmail.com>
		
			
				
	
	
		
			67 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			67 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| 
 | |
| from haystack.agents.base import Tool
 | |
| from haystack.agents.conversational import ConversationalAgent
 | |
| from haystack.agents.memory import ConversationSummaryMemory
 | |
| from haystack.nodes import PromptNode, WebRetriever, PromptTemplate
 | |
| from haystack.pipelines import WebQAPipeline
 | |
| from haystack.agents.types import Color
 | |
| 
 | |
| search_api_key = os.environ.get("SEARCH_API_KEY")
 | |
| if not search_api_key:
 | |
|     raise ValueError("Please set the SEARCH_API_KEY environment variable")
 | |
| openai_api_key = os.environ.get("OPENAI_API_KEY")
 | |
| if not openai_api_key:
 | |
|     raise ValueError("Please set the OPENAI_API_KEY environment variable")
 | |
| 
 | |
| web_prompt = """
 | |
| Synthesize a comprehensive answer from the following most relevant paragraphs and the given question.
 | |
| Provide a clear and concise answer, no longer than 10-20 words.
 | |
| \n\n Paragraphs: {documents} \n\n Question: {query} \n\n Answer:
 | |
| """
 | |
| 
 | |
| web_prompt_node = PromptNode(
 | |
|     "gpt-3.5-turbo", default_prompt_template=PromptTemplate(prompt=web_prompt), api_key=openai_api_key
 | |
| )
 | |
| 
 | |
| web_retriever = WebRetriever(api_key=search_api_key, top_search_results=3, mode="snippets")
 | |
| pipeline = WebQAPipeline(retriever=web_retriever, prompt_node=web_prompt_node)
 | |
| web_qa_tool = Tool(
 | |
|     name="Search",
 | |
|     pipeline_or_node=pipeline,
 | |
|     description="useful for when you need to Google questions if you cannot find answers in the the previous conversation",
 | |
|     output_variable="results",
 | |
|     logging_color=Color.MAGENTA,
 | |
| )
 | |
| 
 | |
| conversational_agent_prompt_node = PromptNode(
 | |
|     "gpt-3.5-turbo",
 | |
|     api_key=openai_api_key,
 | |
|     max_length=256,
 | |
|     stop_words=["Observation:"],
 | |
|     model_kwargs={"temperature": 0.5, "top_p": 0.9},
 | |
| )
 | |
| memory = ConversationSummaryMemory(conversational_agent_prompt_node, summary_frequency=2)
 | |
| 
 | |
| conversational_agent = ConversationalAgent(
 | |
|     prompt_node=conversational_agent_prompt_node, tools=[web_qa_tool], memory=memory
 | |
| )
 | |
| 
 | |
| test = False
 | |
| if test:
 | |
|     questions = [
 | |
|         "Why was Jamie Foxx recently hospitalized?",
 | |
|         "Where was he hospitalized?",
 | |
|         "What movie was he filming at the time?",
 | |
|         "Who is Jamie's female co-star in the movie he was filing at that time?",
 | |
|         "Tell me more about her, who is her partner?",
 | |
|     ]
 | |
|     for question in questions:
 | |
|         conversational_agent.run(question)
 | |
| else:
 | |
|     while True:
 | |
|         user_input = input("\nHuman (type 'exit' or 'quit' to quit): ")
 | |
|         if user_input.lower() == "exit" or user_input.lower() == "quit":
 | |
|             break
 | |
|         response = conversational_agent.run(user_input)
 |