mirror of
				https://github.com/deepset-ai/haystack.git
				synced 2025-10-31 17:59:27 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			130 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import json
 | |
| 
 | |
| import pandas as pd
 | |
| 
 | |
| from haystack.utils import launch_es, fetch_archive_from_http, print_answers
 | |
| from haystack.document_stores import ElasticsearchDocumentStore
 | |
| from haystack import Document, Pipeline
 | |
| from haystack.nodes.retriever import TableTextRetriever
 | |
| from haystack.nodes import TableReader
 | |
| 
 | |
| 
 | |
| def tutorial15_tableqa():
 | |
| 
 | |
|     # Recommended: Start Elasticsearch using Docker via the Haystack utility function
 | |
|     launch_es()
 | |
| 
 | |
|     ## Connect to Elasticsearch
 | |
|     # We want to use a small model producing 512-dimensional embeddings, so we need to set embedding_dim to 512
 | |
|     document_store = ElasticsearchDocumentStore(host="localhost",
 | |
|                                                 username="",
 | |
|                                                 password="",
 | |
|                                                 index="document",
 | |
|                                                 embedding_dim=512)
 | |
| 
 | |
|     ## Add Tables to DocumentStore
 | |
| 
 | |
|     # Let's first fetch some tables that we want to query
 | |
|     # Here: 1000 tables from OTT-QA
 | |
| 
 | |
|     doc_dir = "data"
 | |
|     s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/ottqa_tables_sample.json.zip"
 | |
|     fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
 | |
| 
 | |
|     # Add the tables to the DocumentStore
 | |
|     def read_ottqa_tables(filename):
 | |
|         processed_tables = []
 | |
|         with open(filename) as tables:
 | |
|             tables = json.load(tables)
 | |
|             for key, table in tables.items():
 | |
|                 current_columns = table["header"]
 | |
|                 current_rows = table["data"]
 | |
|                 current_df = pd.DataFrame(columns=current_columns, data=current_rows)
 | |
|                 current_doc_title = table["title"]
 | |
|                 current_section_title = table["section_title"]
 | |
|                 document = Document(
 | |
|                     content=current_df,
 | |
|                     content_type="table",
 | |
|                     meta={"title": current_doc_title, "section_title": current_section_title},
 | |
|                     id=key
 | |
|                 )
 | |
|                 processed_tables.append(document)
 | |
| 
 | |
|         return processed_tables
 | |
| 
 | |
| 
 | |
|     tables = read_ottqa_tables("data/ottqa_tables_sample.json")
 | |
|     document_store.write_documents(tables, index="document")
 | |
| 
 | |
| 
 | |
|     ### Retriever
 | |
| 
 | |
|     # Retrievers help narrowing down the scope for the Reader to a subset of tables where a given question could be answered.
 | |
|     # They use some simple but fast algorithm.
 | |
|     #
 | |
|     # **Here:** We use the TableTextRetriever capable of retrieving relevant content among a database
 | |
|     # of texts and tables using dense embeddings.
 | |
| 
 | |
|     retriever = TableTextRetriever(
 | |
|         document_store=document_store,
 | |
|         query_embedding_model="deepset/bert-small-mm_retrieval-question_encoder",
 | |
|         passage_embedding_model="deepset/bert-small-mm_retrieval-passage_encoder",
 | |
|         table_embedding_model="deepset/bert-small-mm_retrieval-table_encoder",
 | |
|         embed_meta_fields=["title", "section_title"]
 | |
|     )
 | |
| 
 | |
|     # Add table embeddings to the tables in DocumentStore
 | |
|     document_store.update_embeddings(retriever=retriever)
 | |
| 
 | |
|     ## Alternative: ElasticsearchRetriever
 | |
|     #from haystack.nodes.retriever import ElasticsearchRetriever
 | |
|     #retriever = ElasticsearchRetriever(document_store=document_store)
 | |
| 
 | |
|     # Try the Retriever
 | |
|     from haystack.utils import print_documents
 | |
| 
 | |
|     retrieved_tables = retriever.retrieve("How many twin buildings are under construction?", top_k=5)
 | |
|     # Get highest scored table
 | |
|     print(retrieved_tables[0].content)
 | |
| 
 | |
|     ### Reader
 | |
|     # The TableReader is based on TaPas, a transformer-based language model capable of grasping the two-dimensional structure of a table.
 | |
|     # It scans the tables returned by the retriever and extracts the anser.
 | |
|     # The available TableReader models can be found [here](https://huggingface.co/models?pipeline_tag=table-question-answering&sort=downloads).
 | |
|     #
 | |
|     # **Notice**: The TableReader will return an answer for each table, even if the query cannot be answered by the table.
 | |
|     # Furthermore, the confidence scores are not useful as of now, given that they will *always* be very high (i.e. 1 or close to 1).
 | |
| 
 | |
| 
 | |
|     reader = TableReader(model_name_or_path="google/tapas-base-finetuned-wtq", max_seq_len=512)
 | |
| 
 | |
|     # Try the TableReader on one Table (highest-scored retrieved table)
 | |
| 
 | |
|     table_doc = document_store.get_document_by_id("List_of_tallest_twin_buildings_and_structures_in_the_world_1")
 | |
|     print(table_doc.content)
 | |
| 
 | |
|     prediction = reader.predict(query="How many twin buildings are under construction?", documents=[table_doc])
 | |
|     print_answers(prediction, details="minimal")
 | |
| 
 | |
|     ### Pipeline
 | |
|     # The Retriever and the Reader can be sticked together to a pipeline in order to first retrieve relevant tables
 | |
|     # and then extract the answer.
 | |
|     #
 | |
|     # **Notice**: Given that the `TableReader` does not provide useful confidence scores and returns an answer
 | |
|     # for each of the tables, the sorting of the answers might be not helpful.
 | |
| 
 | |
| 
 | |
|     table_qa_pipeline = Pipeline()
 | |
|     table_qa_pipeline.add_node(component=retriever, name="TableTextRetriever", inputs=["Query"])
 | |
|     table_qa_pipeline.add_node(component=reader, name="TableReader", inputs=["TableTextRetriever"])
 | |
| 
 | |
|     prediction = table_qa_pipeline.run("How many twin buildings are under construction?")
 | |
|     print_answers(prediction, details="minimal")
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     tutorial15_tableqa()
 | |
| 
 | |
| # This Haystack script was made with love by deepset in Berlin, Germany
 | |
| # Haystack: https://github.com/deepset-ai/haystack
 | |
| # deepset: https://deepset.ai/
 | 
