Tuana Celik d49e92e21c
ElasticsearchRetriever to BM25Retriever (#2423)
* change class names to bm25

* Update Documentation & Code Style

* Update Documentation & Code Style

* Update Documentation & Code Style

* Add back all_terms_must_match

* fix syntax

* Update Documentation & Code Style

* Update Documentation & Code Style

* Creating a wrapper for old ES retriever with deprecated wrapper

* Update Documentation & Code Style

* New method for deprecating old ESRetriever

* New attempt for deprecating the ESRetriever

* Reverting to the simplest solution - warning logged

* Update Documentation & Code Style

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Sara Zan <sara.zanzottera@deepset.ai>
2022-04-26 16:09:39 +02:00
..
2021-07-26 10:52:52 +02:00
2022-02-03 13:43:18 +01:00
2022-02-03 13:43:18 +01:00
2020-10-22 15:32:56 +02:00
2022-02-03 13:43:18 +01:00
2022-02-03 13:43:18 +01:00
2022-02-03 13:43:18 +01:00

Benchmarks

Run the benchmarks with the following command:

python run.py [--reader] [--retriever_index] [--retriever_query] [--ci] [--update-json]

You can specify which components and processes to benchmark with the following flags.

--reader will trigger the speed and accuracy benchmarks for the reader. Here we simply use the SQuAD dev set.

--retriever_index will trigger indexing benchmarks

--retriever_query will trigger querying benchmarks (embeddings will be loaded from file instead of being computed on the fly)

--ci will cause the the benchmarks to run on a smaller slice of each dataset and a smaller subset of Retriever / Reader / DocStores.

--update-json will cause the script to update the json files in docs/_src/benchmarks so that the website benchmarks will be updated.