haystack/test/document_stores/test_weaviate.py
Zoltan Fedor f4128d3581
Adding support for additional distance/similarity metrics for Weaviate (#3001)
* Adding support for additional distance metrics for Weaviate

Fixes #3000

* Updating the docs

* Fixing error texts

* Fixing issues raised by the review

* Addressing the last issue from the reviews - removing test `test_weaviate.py::test_similarity`

* [EMPTY] Re-trigger CI

* Fixing things based on review

* [EMPTY] Re-trigger CI
2022-08-11 09:48:21 +02:00

162 lines
6.4 KiB
Python

import uuid
from unittest.mock import MagicMock
import numpy as np
import pytest
from haystack.schema import Document
from ..conftest import get_document_store
embedding_dim = 768
def get_uuid():
return str(uuid.uuid4())
DOCUMENTS = [
{"content": "text1", "id": "not a correct uuid", "key": "a"},
{"content": "text2", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
{"content": "text3", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
{"content": "text4", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
{"content": "text5", "id": get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)},
]
DOCUMENTS_XS = [
# current "dict" format for a document
{
"content": "My name is Carla and I live in Berlin",
"id": get_uuid(),
"meta": {"metafield": "test1", "name": "filename1"},
"embedding": np.random.rand(embedding_dim).astype(np.float32),
},
# meta_field at the top level for backward compatibility
{
"content": "My name is Paul and I live in New York",
"id": get_uuid(),
"metafield": "test2",
"name": "filename2",
"embedding": np.random.rand(embedding_dim).astype(np.float32),
},
# Document object for a doc
Document(
content="My name is Christelle and I live in Paris",
id=get_uuid(),
meta={"metafield": "test3", "name": "filename3"},
embedding=np.random.rand(embedding_dim).astype(np.float32),
),
]
@pytest.fixture(params=["weaviate"])
def document_store_with_docs(request, tmp_path):
document_store = get_document_store(request.param, tmp_path=tmp_path)
document_store.write_documents(DOCUMENTS_XS)
yield document_store
document_store.delete_index(document_store.index)
@pytest.fixture(params=["weaviate"])
def document_store(request, tmp_path):
document_store = get_document_store(request.param, tmp_path=tmp_path)
yield document_store
document_store.delete_index(document_store.index)
@pytest.mark.weaviate
@pytest.mark.parametrize("document_store", ["weaviate"], indirect=True)
@pytest.mark.parametrize("batch_size", [2])
def test_weaviate_write_docs(document_store, batch_size):
# Write in small batches
for i in range(0, len(DOCUMENTS), batch_size):
document_store.write_documents(DOCUMENTS[i : i + batch_size])
documents_indexed = document_store.get_all_documents()
assert len(documents_indexed) == len(DOCUMENTS)
documents_indexed = document_store.get_all_documents(batch_size=batch_size)
assert len(documents_indexed) == len(DOCUMENTS)
@pytest.mark.weaviate
@pytest.mark.parametrize("document_store_with_docs", ["weaviate"], indirect=True)
def test_query_by_embedding(document_store_with_docs):
docs = document_store_with_docs.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32))
assert len(docs) == 3
docs = document_store_with_docs.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32), top_k=1)
assert len(docs) == 1
docs = document_store_with_docs.query_by_embedding(
np.random.rand(embedding_dim).astype(np.float32), filters={"name": ["filename2"]}
)
assert len(docs) == 1
@pytest.mark.weaviate
@pytest.mark.parametrize("document_store_with_docs", ["weaviate"], indirect=True)
def test_query(document_store_with_docs):
query_text = "My name is Carla and I live in Berlin"
docs = document_store_with_docs.query(query_text)
assert len(docs) == 3
# BM25 retrieval WITH filters is not yet supported as of Weaviate v1.14.1
with pytest.raises(Exception):
docs = document_store_with_docs.query(query_text, filters={"name": ["filename2"]})
docs = document_store_with_docs.query(filters={"name": ["filename2"]})
assert len(docs) == 1
docs = document_store_with_docs.query(filters={"content": [query_text.lower()]})
assert len(docs) == 1
docs = document_store_with_docs.query(filters={"content": ["live"]})
assert len(docs) == 3
@pytest.mark.weaviate
def test_get_all_documents_unaffected_by_QUERY_MAXIMUM_RESULTS(document_store_with_docs, monkeypatch):
"""
Ensure `get_all_documents` works no matter the value of QUERY_MAXIMUM_RESULTS
see https://github.com/deepset-ai/haystack/issues/2517
"""
monkeypatch.setattr(document_store_with_docs, "get_document_count", lambda **kwargs: 13_000)
docs = document_store_with_docs.get_all_documents()
assert len(docs) == 3
@pytest.mark.weaviate
@pytest.mark.parametrize("document_store_with_docs", ["weaviate"], indirect=True)
def test_deleting_by_id_or_by_filters(document_store_with_docs):
# This test verifies that deleting an object by its ID does not first require fetching all documents. This fixes
# a bug, as described in https://github.com/deepset-ai/haystack/issues/2898
document_store_with_docs.get_all_documents = MagicMock(wraps=document_store_with_docs.get_all_documents)
assert document_store_with_docs.get_document_count() == 3
# Delete a document by its ID. This should bypass the get_all_documents() call
document_store_with_docs.delete_documents(ids=[DOCUMENTS_XS[0]["id"]])
document_store_with_docs.get_all_documents.assert_not_called()
assert document_store_with_docs.get_document_count() == 2
document_store_with_docs.get_all_documents.reset_mock()
# Delete a document with filters. Prove that using the filters will go through get_all_documents()
document_store_with_docs.delete_documents(filters={"name": ["filename2"]})
document_store_with_docs.get_all_documents.assert_called()
assert document_store_with_docs.get_document_count() == 1
@pytest.mark.weaviate
@pytest.mark.parametrize("similarity", ["cosine", "l2", "dot_product"])
def test_similarity_existing_index(tmp_path, similarity):
"""Testing non-matching similarity"""
# create the document_store
document_store = get_document_store("weaviate", tmp_path, similarity=similarity, recreate_index=True)
# try to connect to the same document store but using the wrong similarity
non_matching_similarity = "l2" if similarity == "cosine" else "cosine"
with pytest.raises(ValueError, match=r"This index already exists in Weaviate with similarity .*"):
document_store2 = get_document_store(
"weaviate", tmp_path, similarity=non_matching_similarity, recreate_index=False
)