haystack/test/test_eval_embedding_retriever.py
tstadel 9293a902d7
Fix OOM in test_eval.py Windows CI (#1830)
* diable problematic eval tests for windows ci

* move standard pipeline eval tests to separate test file

* switch to elasticsearch documentstore to reduce inproc mem

* Revert "switch to elasticsearch documentstore to reduce inproc mem"

This reverts commit 7a75871909c3317a252dff3a4df17e99eff69d05.

* get retiever from conftest

* use smaller embedding model for summarizer

* use smaller summarizer model

* remove queries param from pipeline.eval()

* isolate problematic tests

* rename separate test file

* Add latest docstring and tutorial changes

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-12-02 19:23:58 +01:00

73 lines
3.1 KiB
Python

import pytest
from haystack.document_stores.elasticsearch import ElasticsearchDocumentStore
from haystack.nodes.retriever.dense import EmbeddingRetriever
from haystack.document_stores.memory import InMemoryDocumentStore
from haystack.nodes.summarizer.transformers import TransformersSummarizer
from haystack.pipelines import GenerativeQAPipeline, SearchSummarizationPipeline
from haystack.schema import EvaluationResult
from test_eval import EVAL_LABELS
# had to be separated from other eval tests to work around OOM in Windows CI
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever_with_docs", ["embedding"], indirect=True)
def test_generativeqa_calculate_metrics(document_store_with_docs: InMemoryDocumentStore, rag_generator, retriever_with_docs):
document_store_with_docs.update_embeddings(retriever=retriever_with_docs)
pipeline = GenerativeQAPipeline(generator=rag_generator, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval(
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
assert "Retriever" in eval_result
assert "Generator" in eval_result
assert len(eval_result) == 2
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 1.0/6
assert metrics["Generator"]["exact_match"] == 0.0
assert metrics["Generator"]["f1"] == 1.0/3
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_summarizer_calculate_metrics(document_store_with_docs: ElasticsearchDocumentStore):
summarizer = TransformersSummarizer(
model_name_or_path="sshleifer/distill-pegasus-xsum-16-4",
use_gpu=False
)
document_store_with_docs.embedding_dim = 384
retriever = EmbeddingRetriever(
document_store=document_store_with_docs,
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
use_gpu=False
)
document_store_with_docs.update_embeddings(retriever=retriever)
pipeline = SearchSummarizationPipeline(retriever=retriever, summarizer=summarizer, return_in_answer_format=True)
eval_result: EvaluationResult = pipeline.eval(
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
assert "Retriever" in eval_result
assert "Summarizer" in eval_result
assert len(eval_result) == 2
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 1.0/6
assert metrics["Summarizer"]["mrr"] == 0.0
assert metrics["Summarizer"]["map"] == 0.0
assert metrics["Summarizer"]["recall_multi_hit"] == 0.0
assert metrics["Summarizer"]["recall_single_hit"] == 0.0
assert metrics["Summarizer"]["precision"] == 0.0