Silvano Cerza 8b8a93bc0d
refactor: Rename DocumentMeanAveragePrecision and DocumentMeanReciprocalRank (#7470)
* Rename DocumentMeanAveragePrecision and DocumentMeanReciprocalRank

* Update releasenotes

* Simplify names
2024-04-04 17:04:59 +02:00

80 lines
3.0 KiB
Python

from typing import Any, Dict, List
from haystack import Document, component
@component
class DocumentMRREvaluator:
"""
Evaluator that calculates the mean reciprocal rank of the retrieved documents.
MRR measures how high the first retrieved document is ranked.
Each question can have multiple ground truth documents and multiple retrieved documents.
`DocumentMRREvaluator` doesn't normalize its inputs, the `DocumentCleaner` component
should be used to clean and normalize the documents before passing them to this evaluator.
Usage example:
```python
from haystack.components.evaluators import AnswerExactMatchEvaluator
evaluator = DocumentMRREvaluator()
result = evaluator.run(
ground_truth_documents=[
[Document(content="France")],
[Document(content="9th century"), Document(content="9th")],
],
retrieved_documents=[
[Document(content="France")],
[Document(content="9th century"), Document(content="10th century"), Document(content="9th")],
],
)
print(result["individual_scores"])
# [1.0, 0.8333333333333333]
print(result["score"])
# 0.9166666666666666
```
"""
@component.output_types(score=float, individual_scores=List[float])
def run(
self, ground_truth_documents: List[List[Document]], retrieved_documents: List[List[Document]]
) -> Dict[str, Any]:
"""
Run the DocumentMRREvaluator on the given inputs.
`ground_truth_documents` and `retrieved_documents` must have the same length.
:param ground_truth_documents:
A list of expected documents for each question.
:param retrieved_documents:
A list of retrieved documents for each question.
:returns:
A dictionary with the following outputs:
- `score` - The average of calculated scores.
- `invididual_scores` - A list of numbers from 0.0 to 1.0 that represents how high the first retrieved document is ranked.
"""
if len(ground_truth_documents) != len(retrieved_documents):
msg = "The length of ground_truth_documents and retrieved_documents must be the same."
raise ValueError(msg)
individual_scores = []
for ground_truth, retrieved in zip(ground_truth_documents, retrieved_documents):
score = 0.0
for ground_document in ground_truth:
if ground_document.content is None:
continue
for rank, retrieved_document in enumerate(retrieved):
if retrieved_document.content is None:
continue
if ground_document.content in retrieved_document.content:
score = 1 / (rank + 1)
break
individual_scores.append(score)
score = sum(individual_scores) / len(retrieved_documents)
return {"score": score, "individual_scores": individual_scores}