haystack/test/nodes/test_generator.py
Sara Zan 59608ca474
[CI Refactoring] Workflow refactoring (#2576)
* Unify CI tests (from #2466)

* Update Documentation & Code Style

* Change folder names

* Fix markers list

* Remove marker 'slow', replaced with 'integration'

* Soften children check

* Start ES first so it has time to boot while Python is setup

* Run the full workflow

* Try to make pip upgrade on Windows

* Set KG tests as integration

* Update Documentation & Code Style

* typo

* faster pylint

* Make Pylint use the cache

* filter diff files for pylint

* debug pylint statement

* revert pylint changes

* Remove path from asserted log (fails on Windows)

* Skip preprocessor test on Windows

* Tackling Windows specific failures

* Fix pytest command for windows suites

* Remove \ from command

* Move poppler test into integration

* Skip opensearch test on windows

* Add tolerance in reader sas score for Windows

* Another pytorch approx

* Raise time limit for unit tests :(

* Skip poppler test on Windows CI

* Specify to pull with FF only in docs check

* temporarily run the docs check immediately

* Allow merge commit for now

* Try without fetch depth

* Accelerating test

* Accelerating test

* Add repository and ref alongside fetch-depth

* Separate out code&docs check from tests

* Use setup-python cache

* Delete custom action

* Remove the pull step in the docs check, will find a way to run on bot commits

* Add requirements.txt in .github for caching

* Actually install dependencies

* Change deps group for pylint

* Unclear why the requirements.txt is still required :/

* Fix the code check python setup

* Install all deps for pylint

* Make the autoformat check depend on tests and doc updates workflows

* Try installing dependencies in another order

* Try again to install the deps

* quoting the paths

* Ad back the requirements

* Try again to install rest_api and ui

* Change deps group

* Duplicate haystack install line

* See if the cache is the problem

* Disable also in mypy, who knows

* split the install step

* Split install step everywhere

* Revert "Separate out code&docs check from tests"

This reverts commit 1cd59b15ffc5b984e1d642dcbf4c8ccc2bb6c9bd.

* Add back the action

* Proactive support for audio (see text2speech branch)

* Fix label generator tests

* Remove install of libsndfile1 on win temporarily

* exclude audio tests on win

* install ffmpeg for integration tests

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-06-07 09:23:03 +02:00

130 lines
5.7 KiB
Python

import sys
from typing import List
import numpy as np
import pytest
from haystack.schema import Document
from haystack.nodes.answer_generator import Seq2SeqGenerator
from haystack.pipelines import TranslationWrapperPipeline, GenerativeQAPipeline
from ..conftest import DOCS_WITH_EMBEDDINGS
# Keeping few (retriever,document_store) combination to reduce test time
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="Causes OOM on windows github runner")
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("retriever,document_store", [("embedding", "memory")], indirect=True)
def test_generator_pipeline_with_translator(
document_store, retriever, rag_generator, en_to_de_translator, de_to_en_translator
):
document_store.write_documents(DOCS_WITH_EMBEDDINGS)
query = "Was ist die Hauptstadt der Bundesrepublik Deutschland?"
base_pipeline = GenerativeQAPipeline(retriever=retriever, generator=rag_generator)
pipeline = TranslationWrapperPipeline(
input_translator=de_to_en_translator, output_translator=en_to_de_translator, pipeline=base_pipeline
)
output = pipeline.run(query=query, params={"Generator": {"top_k": 2}, "Retriever": {"top_k": 1}})
answers = output["answers"]
assert len(answers) == 2
assert "berlin" in answers[0].answer
@pytest.mark.integration
@pytest.mark.generator
def test_rag_token_generator(rag_generator):
query = "What is capital of the Germany?"
generated_docs = rag_generator.predict(query=query, documents=DOCS_WITH_EMBEDDINGS, top_k=1)
answers = generated_docs["answers"]
assert len(answers) == 1
assert "berlin" in answers[0].answer
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["embedding"], indirect=True)
def test_generator_pipeline(document_store, retriever, rag_generator):
document_store.write_documents(DOCS_WITH_EMBEDDINGS)
query = "What is capital of the Germany?"
pipeline = GenerativeQAPipeline(retriever=retriever, generator=rag_generator)
output = pipeline.run(query=query, params={"Generator": {"top_k": 2}, "Retriever": {"top_k": 1}})
answers = output["answers"]
assert len(answers) == 2
assert "berlin" in answers[0].answer
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="Causes OOM on windows github runner")
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["retribert", "dpr_lfqa"], indirect=True)
@pytest.mark.parametrize("lfqa_generator", ["yjernite/bart_eli5", "vblagoje/bart_lfqa"], indirect=True)
@pytest.mark.embedding_dim(128)
def test_lfqa_pipeline(document_store, retriever, lfqa_generator):
# reuse existing DOCS but regenerate embeddings with retribert
docs: List[Document] = []
for idx, d in enumerate(DOCS_WITH_EMBEDDINGS):
docs.append(Document(d.content, str(idx)))
document_store.write_documents(docs)
document_store.update_embeddings(retriever)
query = "Tell me about Berlin?"
pipeline = GenerativeQAPipeline(generator=lfqa_generator, retriever=retriever)
output = pipeline.run(query=query, params={"top_k": 1})
answers = output["answers"]
assert len(answers) == 1, answers
assert "Germany" in answers[0].answer, answers[0].answer
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["retribert"], indirect=True)
@pytest.mark.embedding_dim(128)
def test_lfqa_pipeline_unknown_converter(document_store, retriever):
# reuse existing DOCS but regenerate embeddings with retribert
docs: List[Document] = []
for idx, d in enumerate(DOCS_WITH_EMBEDDINGS):
docs.append(Document(d.content, str(idx)))
document_store.write_documents(docs)
document_store.update_embeddings(retriever)
seq2seq = Seq2SeqGenerator(model_name_or_path="patrickvonplaten/t5-tiny-random")
query = "Tell me about Berlin?"
pipeline = GenerativeQAPipeline(retriever=retriever, generator=seq2seq)
# raises exception as we don't have converter for "patrickvonplaten/t5-tiny-random" in Seq2SeqGenerator
with pytest.raises(Exception) as exception_info:
output = pipeline.run(query=query, params={"top_k": 1})
assert "doesn't have input converter registered for patrickvonplaten/t5-tiny-random" in str(exception_info.value)
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["retribert"], indirect=True)
@pytest.mark.embedding_dim(128)
def test_lfqa_pipeline_invalid_converter(document_store, retriever):
# reuse existing DOCS but regenerate embeddings with retribert
docs: List[Document] = []
for idx, d in enumerate(DOCS_WITH_EMBEDDINGS):
docs.append(Document(d.content, str(idx)))
document_store.write_documents(docs)
document_store.update_embeddings(retriever)
class _InvalidConverter:
def __call__(self, some_invalid_para: str, another_invalid_param: str) -> None:
pass
seq2seq = Seq2SeqGenerator(
model_name_or_path="patrickvonplaten/t5-tiny-random", input_converter=_InvalidConverter()
)
query = "This query will fail due to InvalidConverter used"
pipeline = GenerativeQAPipeline(retriever=retriever, generator=seq2seq)
# raises exception as we are using invalid method signature in _InvalidConverter
with pytest.raises(Exception) as exception_info:
output = pipeline.run(query=query, params={"top_k": 1})
assert "does not have a valid __call__ method signature" in str(exception_info.value)