haystack/test/nodes/test_table_reader.py
Sebastian 8db7dfb884
refactor: TableReader (#3456)
* Refactoring table reader
2022-10-26 20:57:28 +02:00

171 lines
7.4 KiB
Python

import logging
import pandas as pd
import pytest
from haystack.schema import Document, Answer
from haystack.pipelines.base import Pipeline
@pytest.mark.parametrize("table_reader", ["tapas_small", "rci", "tapas_scored"], indirect=True)
def test_table_reader(table_reader):
data = {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["58", "47", "60"],
"number of movies": ["87", "53", "69"],
"date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
}
table = pd.DataFrame(data)
query = "When was Di Caprio born?"
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
assert prediction["answers"][0].answer == "11 november 1974"
assert prediction["answers"][0].offsets_in_context[0].start == 7
assert prediction["answers"][0].offsets_in_context[0].end == 8
@pytest.mark.parametrize("table_reader", ["tapas_small", "rci"], indirect=True)
def test_table_reader_batch_single_query_single_doc_list(table_reader):
data = {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["58", "47", "60"],
"number of movies": ["87", "53", "69"],
"date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
}
table = pd.DataFrame(data)
query = "When was Di Caprio born?"
prediction = table_reader.predict_batch(queries=[query], documents=[Document(content=table, content_type="table")])
# Expected output: List of lists of answers
assert isinstance(prediction["answers"], list)
assert isinstance(prediction["answers"][0], list)
assert isinstance(prediction["answers"][0][0], Answer)
assert len(prediction["answers"]) == 1 # Predictions for 5 docs
@pytest.mark.parametrize("table_reader", ["tapas_small", "rci"], indirect=True)
def test_table_reader_batch_single_query_multiple_doc_lists(table_reader):
data = {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["58", "47", "60"],
"number of movies": ["87", "53", "69"],
"date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
}
table = pd.DataFrame(data)
query = "When was Di Caprio born?"
prediction = table_reader.predict_batch(
queries=[query], documents=[[Document(content=table, content_type="table")]]
)
# Expected output: List of lists of answers
assert isinstance(prediction["answers"], list)
assert isinstance(prediction["answers"][0], list)
assert isinstance(prediction["answers"][0][0], Answer)
assert len(prediction["answers"]) == 1 # Predictions for 1 collection of docs
@pytest.mark.parametrize("table_reader", ["tapas_small", "rci"], indirect=True)
def test_table_reader_batch_multiple_queries_single_doc_list(table_reader):
data = {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["58", "47", "60"],
"number of movies": ["87", "53", "69"],
"date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
}
table = pd.DataFrame(data)
query = "When was Di Caprio born?"
prediction = table_reader.predict_batch(
queries=[query, query], documents=[Document(content=table, content_type="table")]
)
# Expected output: List of lists of lists of answers
assert isinstance(prediction["answers"], list)
assert isinstance(prediction["answers"][0], list)
assert isinstance(prediction["answers"][0][0], list)
assert isinstance(prediction["answers"][0][0][0], Answer)
assert len(prediction["answers"]) == 2 # Predictions for 2 queries
@pytest.mark.parametrize("table_reader", ["tapas_small", "rci"], indirect=True)
def test_table_reader_batch_multiple_queries_multiple_doc_lists(table_reader):
data = {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["58", "47", "60"],
"number of movies": ["87", "53", "69"],
"date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
}
table = pd.DataFrame(data)
query = "When was Di Caprio born?"
prediction = table_reader.predict_batch(
queries=[query, query],
documents=[[Document(content=table, content_type="table")], [Document(content=table, content_type="table")]],
)
# Expected output: List of lists answers
assert isinstance(prediction["answers"], list)
assert isinstance(prediction["answers"][0], list)
assert isinstance(prediction["answers"][0][0], Answer)
assert len(prediction["answers"]) == 2 # Predictions for 2 collections of documents
@pytest.mark.parametrize("table_reader", ["tapas_small", "rci"], indirect=True)
def test_table_reader_in_pipeline(table_reader):
pipeline = Pipeline()
pipeline.add_node(table_reader, "TableReader", ["Query"])
data = {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["58", "47", "60"],
"number of movies": ["87", "53", "69"],
"date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
}
table = pd.DataFrame(data)
query = "When was Di Caprio born?"
prediction = pipeline.run(query=query, documents=[Document(content=table, content_type="table")])
assert prediction["answers"][0].answer == "11 november 1974"
assert prediction["answers"][0].offsets_in_context[0].start == 7
assert prediction["answers"][0].offsets_in_context[0].end == 8
@pytest.mark.parametrize("table_reader", ["tapas_base"], indirect=True)
def test_table_reader_aggregation(table_reader):
data = {
"Mountain": ["Mount Everest", "K2", "Kangchenjunga", "Lhotse", "Makalu"],
"Height": ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"],
}
table = pd.DataFrame(data)
query = "How tall are all mountains on average?"
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
assert prediction["answers"][0].answer == "8609.2 m"
assert prediction["answers"][0].meta["aggregation_operator"] == "AVERAGE"
assert prediction["answers"][0].meta["answer_cells"] == ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"]
query = "How tall are all mountains together?"
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
assert prediction["answers"][0].answer == "43046.0 m"
assert prediction["answers"][0].meta["aggregation_operator"] == "SUM"
assert prediction["answers"][0].meta["answer_cells"] == ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"]
@pytest.mark.parametrize("table_reader", ["tapas_small", "rci"], indirect=True)
def test_table_without_rows(caplog, table_reader):
# empty DataFrame
table = pd.DataFrame()
document = Document(content=table, content_type="table", id="no_rows")
with caplog.at_level(logging.WARNING):
predictions = table_reader.predict(query="test", documents=[document])
assert "Skipping document with id 'no_rows'" in caplog.text
assert len(predictions["answers"]) == 0
@pytest.mark.parametrize("table_reader", ["tapas_small", "rci"], indirect=True)
def test_text_document(caplog, table_reader):
document = Document(content="text", id="text_doc")
with caplog.at_level(logging.WARNING):
predictions = table_reader.predict(query="test", documents=[document])
assert "Skipping document with id 'text_doc'" in caplog.text
assert len(predictions["answers"]) == 0