mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-23 17:00:41 +00:00
196 lines
6.8 KiB
Python
196 lines
6.8 KiB
Python
import logging
|
||
|
||
import pytest
|
||
|
||
from haystack.preview import Document
|
||
from haystack.preview.components.preprocessors import DocumentCleaner
|
||
|
||
|
||
class TestDocumentCleaner:
|
||
@pytest.mark.unit
|
||
def test_init(self):
|
||
cleaner = DocumentCleaner()
|
||
assert cleaner.remove_empty_lines == True
|
||
assert cleaner.remove_extra_whitespaces == True
|
||
assert cleaner.remove_repeated_substrings == False
|
||
assert cleaner.remove_substrings is None
|
||
assert cleaner.remove_regex is None
|
||
|
||
@pytest.mark.unit
|
||
def test_to_dict(self):
|
||
cleaner = DocumentCleaner()
|
||
data = cleaner.to_dict()
|
||
assert data == {
|
||
"type": "DocumentCleaner",
|
||
"init_parameters": {
|
||
"remove_empty_lines": True,
|
||
"remove_extra_whitespaces": True,
|
||
"remove_repeated_substrings": False,
|
||
"remove_substrings": None,
|
||
"remove_regex": None,
|
||
},
|
||
}
|
||
|
||
@pytest.mark.unit
|
||
def test_to_dict_with_custom_init_parameters(self):
|
||
cleaner = DocumentCleaner(
|
||
remove_empty_lines=False,
|
||
remove_extra_whitespaces=False,
|
||
remove_repeated_substrings=True,
|
||
remove_substrings=["a", "b"],
|
||
remove_regex=r"\s\s+",
|
||
)
|
||
data = cleaner.to_dict()
|
||
assert data == {
|
||
"type": "DocumentCleaner",
|
||
"init_parameters": {
|
||
"remove_empty_lines": False,
|
||
"remove_extra_whitespaces": False,
|
||
"remove_repeated_substrings": True,
|
||
"remove_substrings": ["a", "b"],
|
||
"remove_regex": r"\s\s+",
|
||
},
|
||
}
|
||
|
||
@pytest.mark.unit
|
||
def test_from_dict(self):
|
||
data = {
|
||
"type": "DocumentCleaner",
|
||
"init_parameters": {
|
||
"remove_empty_lines": False,
|
||
"remove_extra_whitespaces": False,
|
||
"remove_repeated_substrings": True,
|
||
"remove_substrings": ["a", "b"],
|
||
"remove_regex": r"\s\s+",
|
||
},
|
||
}
|
||
cleaner = DocumentCleaner.from_dict(data)
|
||
assert cleaner.remove_empty_lines == False
|
||
assert cleaner.remove_extra_whitespaces == False
|
||
assert cleaner.remove_repeated_substrings == True
|
||
assert cleaner.remove_substrings == ["a", "b"]
|
||
assert cleaner.remove_regex == r"\s\s+"
|
||
|
||
@pytest.mark.unit
|
||
def test_non_text_document(self, caplog):
|
||
with caplog.at_level(logging.WARNING):
|
||
cleaner = DocumentCleaner()
|
||
cleaner.run(documents=[Document()])
|
||
assert "DocumentCleaner only cleans text documents but document.text for document ID" in caplog.text
|
||
|
||
@pytest.mark.unit
|
||
def test_single_document(self):
|
||
with pytest.raises(TypeError, match="DocumentCleaner expects a List of Documents as input."):
|
||
cleaner = DocumentCleaner()
|
||
cleaner.run(documents=Document())
|
||
|
||
@pytest.mark.unit
|
||
def test_empty_list(self):
|
||
cleaner = DocumentCleaner()
|
||
result = cleaner.run(documents=[])
|
||
assert result == {"documents": []}
|
||
|
||
@pytest.mark.unit
|
||
def test_remove_empty_lines(self):
|
||
cleaner = DocumentCleaner(remove_extra_whitespaces=False)
|
||
result = cleaner.run(
|
||
documents=[
|
||
Document(
|
||
text="This is a text with some words. "
|
||
""
|
||
"There is a second sentence. "
|
||
""
|
||
"And there is a third sentence."
|
||
)
|
||
]
|
||
)
|
||
assert len(result["documents"]) == 1
|
||
assert (
|
||
result["documents"][0].text
|
||
== "This is a text with some words. There is a second sentence. And there is a third sentence."
|
||
)
|
||
|
||
@pytest.mark.unit
|
||
def test_remove_whitespaces(self):
|
||
cleaner = DocumentCleaner(remove_empty_lines=False)
|
||
result = cleaner.run(
|
||
documents=[
|
||
Document(
|
||
text=" This is a text with some words. "
|
||
""
|
||
"There is a second sentence. "
|
||
""
|
||
"And there is a third sentence. "
|
||
)
|
||
]
|
||
)
|
||
assert len(result["documents"]) == 1
|
||
assert result["documents"][0].text == (
|
||
"This is a text with some words. " "" "There is a second sentence. " "" "And there is a third sentence."
|
||
)
|
||
|
||
@pytest.mark.unit
|
||
def test_remove_substrings(self):
|
||
cleaner = DocumentCleaner(remove_substrings=["This", "A", "words", "🪲"])
|
||
result = cleaner.run(documents=[Document(text="This is a text with some words.🪲")])
|
||
assert len(result["documents"]) == 1
|
||
assert result["documents"][0].text == " is a text with some ."
|
||
|
||
@pytest.mark.unit
|
||
def test_remove_regex(self):
|
||
cleaner = DocumentCleaner(remove_regex=r"\s\s+")
|
||
result = cleaner.run(documents=[Document(text="This is a text with some words.")])
|
||
assert len(result["documents"]) == 1
|
||
assert result["documents"][0].text == "This is a text with some words."
|
||
|
||
@pytest.mark.unit
|
||
def test_remove_repeated_substrings(self):
|
||
cleaner = DocumentCleaner(
|
||
remove_empty_lines=False, remove_extra_whitespaces=False, remove_repeated_substrings=True
|
||
)
|
||
|
||
text = """First PageThis is a header.
|
||
Page of
|
||
2
|
||
4
|
||
Lorem ipsum dolor sit amet
|
||
This is a footer number 1
|
||
This is footer number 2This is a header.
|
||
Page of
|
||
3
|
||
4
|
||
Sid ut perspiciatis unde
|
||
This is a footer number 1
|
||
This is footer number 2This is a header.
|
||
Page of
|
||
4
|
||
4
|
||
Sed do eiusmod tempor.
|
||
This is a footer number 1
|
||
This is footer number 2"""
|
||
|
||
expected_text = """First Page 2
|
||
4
|
||
Lorem ipsum dolor sit amet 3
|
||
4
|
||
Sid ut perspiciatis unde 4
|
||
4
|
||
Sed do eiusmod tempor."""
|
||
result = cleaner.run(documents=[Document(text=text)])
|
||
assert result["documents"][0].text == expected_text
|
||
|
||
@pytest.mark.unit
|
||
def test_copy_id_hash_keys_and_metadata(self):
|
||
cleaner = DocumentCleaner()
|
||
documents = [
|
||
Document(text="Text. ", metadata={"name": "doc 0"}, id_hash_keys=["name"]),
|
||
Document(text="Text. ", metadata={"name": "doc 1"}, id_hash_keys=["name"]),
|
||
]
|
||
result = cleaner.run(documents=documents)
|
||
assert len(result["documents"]) == 2
|
||
assert result["documents"][0].id != result["documents"][1].id
|
||
for doc, cleaned_doc in zip(documents, result["documents"]):
|
||
assert doc.id_hash_keys == cleaned_doc.id_hash_keys
|
||
assert doc.metadata == cleaned_doc.metadata
|
||
assert cleaned_doc.text == "Text."
|