mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-06-26 22:00:13 +00:00
431 lines
20 KiB
Python
431 lines
20 KiB
Python
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
|
|
#
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import os
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import pytest
|
|
from openai import OpenAIError
|
|
|
|
from haystack import component, Pipeline
|
|
from haystack.components.generators.chat import AzureOpenAIChatGenerator
|
|
from haystack.components.generators.utils import print_streaming_chunk
|
|
from haystack.dataclasses import ChatMessage, ToolCall
|
|
from haystack.tools import ComponentTool, Tool
|
|
from haystack.tools.toolset import Toolset
|
|
from haystack.utils.auth import Secret
|
|
from haystack.utils.azure import default_azure_ad_token_provider
|
|
|
|
|
|
def get_weather(city: str) -> Dict[str, Any]:
|
|
weather_info = {
|
|
"Berlin": {"weather": "mostly sunny", "temperature": 7, "unit": "celsius"},
|
|
"Paris": {"weather": "mostly cloudy", "temperature": 8, "unit": "celsius"},
|
|
"Rome": {"weather": "sunny", "temperature": 14, "unit": "celsius"},
|
|
}
|
|
return weather_info.get(city, {"weather": "unknown", "temperature": 0, "unit": "celsius"})
|
|
|
|
|
|
@component
|
|
class MessageExtractor:
|
|
@component.output_types(messages=List[str], meta=Dict[str, Any])
|
|
def run(self, messages: List[ChatMessage], meta: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
|
|
"""
|
|
Extracts the text content of ChatMessage objects
|
|
|
|
:param messages: List of Haystack ChatMessage objects
|
|
:param meta: Optional metadata to include in the response.
|
|
:returns:
|
|
A dictionary with keys "messages" and "meta".
|
|
"""
|
|
if meta is None:
|
|
meta = {}
|
|
return {"messages": [m.text for m in messages], "meta": meta}
|
|
|
|
|
|
@pytest.fixture
|
|
def tools():
|
|
weather_tool = Tool(
|
|
name="weather",
|
|
description="useful to determine the weather in a given location",
|
|
parameters={"type": "object", "properties": {"city": {"type": "string"}}, "required": ["city"]},
|
|
function=get_weather,
|
|
)
|
|
# We add a tool that has a more complex parameter signature
|
|
message_extractor_tool = ComponentTool(
|
|
component=MessageExtractor(),
|
|
name="message_extractor",
|
|
description="Useful for returning the text content of ChatMessage objects",
|
|
)
|
|
return [weather_tool, message_extractor_tool]
|
|
|
|
|
|
class TestAzureOpenAIChatGenerator:
|
|
def test_init_default(self, monkeypatch):
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key")
|
|
component = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint")
|
|
assert component.client.api_key == "test-api-key"
|
|
assert component.azure_deployment == "gpt-4o-mini"
|
|
assert component.streaming_callback is None
|
|
assert not component.generation_kwargs
|
|
|
|
def test_init_fail_wo_api_key(self, monkeypatch):
|
|
monkeypatch.delenv("AZURE_OPENAI_API_KEY", raising=False)
|
|
monkeypatch.delenv("AZURE_OPENAI_AD_TOKEN", raising=False)
|
|
with pytest.raises(OpenAIError):
|
|
AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint")
|
|
|
|
def test_init_with_parameters(self, tools):
|
|
component = AzureOpenAIChatGenerator(
|
|
api_key=Secret.from_token("test-api-key"),
|
|
azure_endpoint="some-non-existing-endpoint",
|
|
streaming_callback=print_streaming_chunk,
|
|
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
|
|
tools=tools,
|
|
tools_strict=True,
|
|
azure_ad_token_provider=default_azure_ad_token_provider,
|
|
)
|
|
assert component.client.api_key == "test-api-key"
|
|
assert component.azure_deployment == "gpt-4o-mini"
|
|
assert component.streaming_callback is print_streaming_chunk
|
|
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
|
|
assert component.tools == tools
|
|
assert component.tools_strict
|
|
assert component.azure_ad_token_provider is not None
|
|
assert component.max_retries == 5
|
|
|
|
def test_init_with_0_max_retries(self, tools):
|
|
"""Tests that the max_retries init param is set correctly if equal 0"""
|
|
component = AzureOpenAIChatGenerator(
|
|
api_key=Secret.from_token("test-api-key"),
|
|
azure_endpoint="some-non-existing-endpoint",
|
|
streaming_callback=print_streaming_chunk,
|
|
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
|
|
tools=tools,
|
|
tools_strict=True,
|
|
azure_ad_token_provider=default_azure_ad_token_provider,
|
|
max_retries=0,
|
|
)
|
|
assert component.client.api_key == "test-api-key"
|
|
assert component.azure_deployment == "gpt-4o-mini"
|
|
assert component.streaming_callback is print_streaming_chunk
|
|
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
|
|
assert component.tools == tools
|
|
assert component.tools_strict
|
|
assert component.azure_ad_token_provider is not None
|
|
assert component.max_retries == 0
|
|
|
|
def test_to_dict_default(self, monkeypatch):
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key")
|
|
component = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint")
|
|
data = component.to_dict()
|
|
assert data == {
|
|
"type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator",
|
|
"init_parameters": {
|
|
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
|
|
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
|
|
"api_version": "2023-05-15",
|
|
"azure_endpoint": "some-non-existing-endpoint",
|
|
"azure_deployment": "gpt-4o-mini",
|
|
"organization": None,
|
|
"streaming_callback": None,
|
|
"generation_kwargs": {},
|
|
"timeout": 30.0,
|
|
"max_retries": 5,
|
|
"default_headers": {},
|
|
"tools": None,
|
|
"tools_strict": False,
|
|
"azure_ad_token_provider": None,
|
|
"http_client_kwargs": None,
|
|
},
|
|
}
|
|
|
|
def test_to_dict_with_parameters(self, monkeypatch):
|
|
monkeypatch.setenv("ENV_VAR", "test-api-key")
|
|
component = AzureOpenAIChatGenerator(
|
|
api_key=Secret.from_env_var("ENV_VAR", strict=False),
|
|
azure_ad_token=Secret.from_env_var("ENV_VAR1", strict=False),
|
|
azure_endpoint="some-non-existing-endpoint",
|
|
streaming_callback=print_streaming_chunk,
|
|
timeout=2.5,
|
|
max_retries=10,
|
|
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
|
|
azure_ad_token_provider=default_azure_ad_token_provider,
|
|
http_client_kwargs={"proxy": "http://localhost:8080"},
|
|
)
|
|
data = component.to_dict()
|
|
assert data == {
|
|
"type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator",
|
|
"init_parameters": {
|
|
"api_key": {"env_vars": ["ENV_VAR"], "strict": False, "type": "env_var"},
|
|
"azure_ad_token": {"env_vars": ["ENV_VAR1"], "strict": False, "type": "env_var"},
|
|
"api_version": "2023-05-15",
|
|
"azure_endpoint": "some-non-existing-endpoint",
|
|
"azure_deployment": "gpt-4o-mini",
|
|
"organization": None,
|
|
"streaming_callback": "haystack.components.generators.utils.print_streaming_chunk",
|
|
"timeout": 2.5,
|
|
"max_retries": 10,
|
|
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
|
|
"tools": None,
|
|
"tools_strict": False,
|
|
"default_headers": {},
|
|
"azure_ad_token_provider": "haystack.utils.azure.default_azure_ad_token_provider",
|
|
"http_client_kwargs": {"proxy": "http://localhost:8080"},
|
|
},
|
|
}
|
|
|
|
def test_from_dict(self, monkeypatch):
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key")
|
|
monkeypatch.setenv("AZURE_OPENAI_AD_TOKEN", "test-ad-token")
|
|
data = {
|
|
"type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator",
|
|
"init_parameters": {
|
|
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
|
|
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
|
|
"api_version": "2023-05-15",
|
|
"azure_endpoint": "some-non-existing-endpoint",
|
|
"azure_deployment": "gpt-4o-mini",
|
|
"organization": None,
|
|
"streaming_callback": None,
|
|
"generation_kwargs": {},
|
|
"timeout": 30.0,
|
|
"max_retries": 5,
|
|
"default_headers": {},
|
|
"tools": [
|
|
{
|
|
"type": "haystack.tools.tool.Tool",
|
|
"data": {
|
|
"description": "description",
|
|
"function": "builtins.print",
|
|
"name": "name",
|
|
"parameters": {"x": {"type": "string"}},
|
|
},
|
|
}
|
|
],
|
|
"tools_strict": False,
|
|
"http_client_kwargs": None,
|
|
},
|
|
}
|
|
|
|
generator = AzureOpenAIChatGenerator.from_dict(data)
|
|
assert isinstance(generator, AzureOpenAIChatGenerator)
|
|
|
|
assert generator.api_key == Secret.from_env_var("AZURE_OPENAI_API_KEY", strict=False)
|
|
assert generator.azure_ad_token == Secret.from_env_var("AZURE_OPENAI_AD_TOKEN", strict=False)
|
|
assert generator.api_version == "2023-05-15"
|
|
assert generator.azure_endpoint == "some-non-existing-endpoint"
|
|
assert generator.azure_deployment == "gpt-4o-mini"
|
|
assert generator.organization is None
|
|
assert generator.streaming_callback is None
|
|
assert generator.generation_kwargs == {}
|
|
assert generator.timeout == 30.0
|
|
assert generator.max_retries == 5
|
|
assert generator.default_headers == {}
|
|
assert generator.tools == [
|
|
Tool(name="name", description="description", parameters={"x": {"type": "string"}}, function=print)
|
|
]
|
|
assert generator.tools_strict == False
|
|
assert generator.http_client_kwargs is None
|
|
|
|
def test_pipeline_serialization_deserialization(self, tmp_path, monkeypatch):
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key")
|
|
generator = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint")
|
|
p = Pipeline()
|
|
p.add_component(instance=generator, name="generator")
|
|
|
|
assert p.to_dict() == {
|
|
"metadata": {},
|
|
"max_runs_per_component": 100,
|
|
"connection_type_validation": True,
|
|
"components": {
|
|
"generator": {
|
|
"type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator",
|
|
"init_parameters": {
|
|
"azure_endpoint": "some-non-existing-endpoint",
|
|
"azure_deployment": "gpt-4o-mini",
|
|
"organization": None,
|
|
"api_version": "2023-05-15",
|
|
"streaming_callback": None,
|
|
"generation_kwargs": {},
|
|
"timeout": 30.0,
|
|
"max_retries": 5,
|
|
"api_key": {"type": "env_var", "env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False},
|
|
"azure_ad_token": {"type": "env_var", "env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False},
|
|
"default_headers": {},
|
|
"tools": None,
|
|
"tools_strict": False,
|
|
"azure_ad_token_provider": None,
|
|
"http_client_kwargs": None,
|
|
},
|
|
}
|
|
},
|
|
"connections": [],
|
|
}
|
|
p_str = p.dumps()
|
|
q = Pipeline.loads(p_str)
|
|
assert p.to_dict() == q.to_dict(), "Pipeline serialization/deserialization w/ AzureOpenAIChatGenerator failed."
|
|
|
|
def test_azure_chat_generator_with_toolset_initialization(self, tools, monkeypatch):
|
|
"""Test that the AzureOpenAIChatGenerator can be initialized with a Toolset."""
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key")
|
|
toolset = Toolset(tools)
|
|
generator = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint", tools=toolset)
|
|
assert generator.tools == toolset
|
|
|
|
def test_from_dict_with_toolset(self, tools, monkeypatch):
|
|
"""Test that the AzureOpenAIChatGenerator can be deserialized from a dictionary with a Toolset."""
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key")
|
|
toolset = Toolset(tools)
|
|
component = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint", tools=toolset)
|
|
data = component.to_dict()
|
|
|
|
deserialized_component = AzureOpenAIChatGenerator.from_dict(data)
|
|
|
|
assert isinstance(deserialized_component.tools, Toolset)
|
|
assert len(deserialized_component.tools) == len(tools)
|
|
assert all(isinstance(tool, Tool) for tool in deserialized_component.tools)
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("AZURE_OPENAI_API_KEY", None) or not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
|
|
reason=(
|
|
"Please export env variables called AZURE_OPENAI_API_KEY containing "
|
|
"the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
|
|
"the Azure OpenAI endpoint URL to run this test."
|
|
),
|
|
)
|
|
def test_live_run(self):
|
|
chat_messages = [ChatMessage.from_user("What's the capital of France")]
|
|
component = AzureOpenAIChatGenerator(organization="HaystackCI")
|
|
results = component.run(chat_messages)
|
|
assert len(results["replies"]) == 1
|
|
message: ChatMessage = results["replies"][0]
|
|
assert "Paris" in message.text
|
|
assert "gpt-4o-mini" in message.meta["model"]
|
|
assert message.meta["finish_reason"] == "stop"
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("AZURE_OPENAI_API_KEY", None) or not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
|
|
reason=(
|
|
"Please export env variables called AZURE_OPENAI_API_KEY containing "
|
|
"the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
|
|
"the Azure OpenAI endpoint URL to run this test."
|
|
),
|
|
)
|
|
def test_live_run_with_tools(self, tools):
|
|
chat_messages = [ChatMessage.from_user("What's the weather like in Paris?")]
|
|
component = AzureOpenAIChatGenerator(organization="HaystackCI", tools=tools)
|
|
results = component.run(chat_messages)
|
|
assert len(results["replies"]) == 1
|
|
message = results["replies"][0]
|
|
|
|
assert not message.texts
|
|
assert not message.text
|
|
assert message.tool_calls
|
|
tool_call = message.tool_call
|
|
assert isinstance(tool_call, ToolCall)
|
|
assert tool_call.tool_name == "weather"
|
|
assert tool_call.arguments == {"city": "Paris"}
|
|
assert message.meta["finish_reason"] == "tool_calls"
|
|
|
|
def test_to_dict_with_toolset(self, tools, monkeypatch):
|
|
"""Test that the AzureOpenAIChatGenerator can be serialized to a dictionary with a Toolset."""
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key")
|
|
toolset = Toolset(tools[:1])
|
|
component = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint", tools=toolset)
|
|
data = component.to_dict()
|
|
|
|
expected_tools_data = {
|
|
"type": "haystack.tools.toolset.Toolset",
|
|
"data": {
|
|
"tools": [
|
|
{
|
|
"type": "haystack.tools.tool.Tool",
|
|
"data": {
|
|
"name": "weather",
|
|
"description": "useful to determine the weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"city": {"type": "string"}},
|
|
"required": ["city"],
|
|
},
|
|
"function": "generators.chat.test_azure.get_weather",
|
|
"outputs_to_string": None,
|
|
"inputs_from_state": None,
|
|
"outputs_to_state": None,
|
|
},
|
|
}
|
|
]
|
|
},
|
|
}
|
|
assert data["init_parameters"]["tools"] == expected_tools_data
|
|
|
|
|
|
class TestAzureOpenAIChatGeneratorAsync:
|
|
def test_init_should_also_create_async_client_with_same_args(self, tools):
|
|
component = AzureOpenAIChatGenerator(
|
|
api_key=Secret.from_token("test-api-key"),
|
|
azure_endpoint="some-non-existing-endpoint",
|
|
streaming_callback=print_streaming_chunk,
|
|
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
|
|
tools=tools,
|
|
tools_strict=True,
|
|
)
|
|
assert component.async_client.api_key == "test-api-key"
|
|
assert component.azure_deployment == "gpt-4o-mini"
|
|
assert component.streaming_callback is print_streaming_chunk
|
|
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
|
|
assert component.tools == tools
|
|
assert component.tools_strict
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("AZURE_OPENAI_API_KEY", None) or not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
|
|
reason=(
|
|
"Please export env variables called AZURE_OPENAI_API_KEY containing "
|
|
"the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
|
|
"the Azure OpenAI endpoint URL to run this test."
|
|
),
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_live_run_async(self):
|
|
chat_messages = [ChatMessage.from_user("What's the capital of France")]
|
|
component = AzureOpenAIChatGenerator(generation_kwargs={"n": 1})
|
|
results = await component.run_async(chat_messages)
|
|
assert len(results["replies"]) == 1
|
|
message: ChatMessage = results["replies"][0]
|
|
assert "Paris" in message.text
|
|
assert "gpt-4o" in message.meta["model"]
|
|
assert message.meta["finish_reason"] == "stop"
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("AZURE_OPENAI_API_KEY", None) or not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
|
|
reason=(
|
|
"Please export env variables called AZURE_OPENAI_API_KEY containing "
|
|
"the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
|
|
"the Azure OpenAI endpoint URL to run this test."
|
|
),
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_live_run_with_tools_async(self, tools):
|
|
chat_messages = [ChatMessage.from_user("What's the weather like in Paris?")]
|
|
component = AzureOpenAIChatGenerator(tools=tools)
|
|
results = await component.run_async(chat_messages)
|
|
assert len(results["replies"]) == 1
|
|
message = results["replies"][0]
|
|
|
|
assert not message.texts
|
|
assert not message.text
|
|
assert message.tool_calls
|
|
tool_call = message.tool_call
|
|
assert isinstance(tool_call, ToolCall)
|
|
assert tool_call.tool_name == "weather"
|
|
assert tool_call.arguments == {"city": "Paris"}
|
|
assert message.meta["finish_reason"] == "tool_calls"
|
|
|
|
# additional tests intentionally omitted as they are covered by test_openai.py
|