haystack/examples/basic_faq_pipeline.py
Nicola Procopio c102b152dc
fix: Run update_embeddings in examples (#6008)
* added hybrid search example

Added an example about hybrid search for faq pipeline on covid dataset

* formatted with back formatter

* renamed document

* fixed

* fixed typos

* added test

added test for hybrid search

* fixed withespaces

* removed test for hybrid search

* fixed pylint

* commented logging

* updated hybrid search example

* release notes

* Update hybrid_search_faq_pipeline.py-815df846dca7e872.yaml

* Update hybrid_search_faq_pipeline.py

* mention hybrid search example in release notes

* reduce installed dependencies in examples test workflow

* do not install cuda dependencies

* skip models if API key not set; delete document indices

* skip models if API key not set; delete document indices

* skip models if API key not set; delete document indices

* keep roberta-base model and inference extra

* pylint

* disable pylint no-logging-basicconfig rule

---------

Co-authored-by: Julian Risch <julian.risch@deepset.ai>
2023-10-10 16:38:52 +02:00

77 lines
2.6 KiB
Python

# Disable pylint errors for logging basicConfig
# pylint: disable=no-logging-basicconfig
import logging
import pandas as pd
from haystack.document_stores import ElasticsearchDocumentStore
from haystack.nodes import EmbeddingRetriever
from haystack.nodes.other.docs2answers import Docs2Answers
from haystack.pipelines import Pipeline
from haystack.utils import fetch_archive_from_http, launch_es, print_answers
logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING)
logging.getLogger("haystack").setLevel(logging.INFO)
def basic_faq_pipeline():
document_store = ElasticsearchDocumentStore(
host="localhost",
username="",
password="",
index="example-document",
embedding_field="question_emb",
embedding_dim=384,
excluded_meta_data=["question_emb"],
similarity="cosine",
)
retriever = EmbeddingRetriever(
document_store=document_store,
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
use_gpu=True,
scale_score=False,
)
doc_to_answers = Docs2Answers()
doc_dir = "data/basic_faq_pipeline"
s3_url = "https://core-engineering.s3.eu-central-1.amazonaws.com/public/scripts/small_faq_covid.csv1.zip"
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
df = pd.read_csv(f"{doc_dir}/small_faq_covid.csv")
# Minimal cleaning
df.fillna(value="", inplace=True)
df["question"] = df["question"].apply(lambda x: x.strip())
print(df.head())
# Get embeddings for our questions from the FAQs
questions = list(df["question"].values)
df["question_emb"] = retriever.embed_queries(queries=questions).tolist()
df = df.rename(columns={"question": "content"})
# Convert Dataframe to list of dicts and index them in our DocumentStore
docs_to_index = df.to_dict(orient="records")
document_store.write_documents(docs_to_index)
document_store.update_embeddings(retriever)
# Initialize a Pipeline (this time without a reader) and ask questions
pipeline = Pipeline()
pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
pipeline.add_node(component=doc_to_answers, name="Docs2Answers", inputs=["Retriever"])
# Ask a question
prediction = pipeline.run(query="How is the virus spreading?", params={"Retriever": {"top_k": 10}})
print_answers(prediction, details="medium")
# Remove the index once we're done to save space
document_store.delete_index(index="example-document")
return prediction
if __name__ == "__main__":
launch_es()
basic_faq_pipeline()