mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-03 07:04:01 +00:00

* add component checks * pipeline should run deterministically * add FIFOQueue * add agent tests * add order dependent tests * run new tests * remove code that is not needed * test: intermediate from cycle outputs are available outside cycle * add tests for component checks (Claude) * adapt tests for component checks (o1 review) * chore: format * remove tests that aren't needed anymore * add _calculate_priority tests * revert accidental change in pyproject.toml * test format conversion * adapt to naming convention * chore: proper docstrings and type hints for PQ * format * add more unit tests * rm unneeded comments * test input consumption * lint * fix: docstrings * lint * format * format * fix license header * fix license header * add component run tests * fix: pass correct input format to tracing * fix types * format * format * types * add defaults from Socket instead of signature - otherwise components with dynamic inputs would fail * fix test names * still wait for optional inputs on greedy variadic sockets - mirrors previous behavior * fix format * wip: warn for ambiguous running order * wip: alternative warning * fix license header * make code more readable Co-authored-by: Amna Mubashar <amnahkhan.ak@gmail.com> * Introduce content tracing to a behavioral test * Fixing linting * Remove debug print statements * Fix tracer tests * remove print * test: test for component inputs * test: remove testing for run order * chore: update component checks from experimental * chore: update pipeline and base from experimental * refactor: remove unused method * refactor: remove unused method * refactor: outdated comment * refactor: inputs state is updated as side effect - to prepare for AsyncPipeline implementation * format * test: add file conversion test * format * fix: original implementation deepcopies outputs * lint * fix: from_dict was updated * fix: format * fix: test * test: add test for thread safety * remove unused imports * format * test: FIFOPriorityQueue * chore: add release note * feat: add AsyncPipeline * chore: Add release notes * fix: format * debug: switch run order to debug ubuntu and windows tests * fix: consider priorities of other components while waiting for DEFER * refactor: simplify code * fix: resolve merge conflict with mermaid changes * fix: format * fix: remove unused import * refactor: rename to avoid accidental conflicts * fix: track pipeline type * fix: and extend test * fix: format * style: sort alphabetically * Update test/core/pipeline/features/conftest.py Co-authored-by: Amna Mubashar <amnahkhan.ak@gmail.com> * Update test/core/pipeline/features/conftest.py Co-authored-by: Amna Mubashar <amnahkhan.ak@gmail.com> * Update releasenotes/notes/feat-async-pipeline-338856a142e1318c.yaml * fix: indentation, do not close loop * fix: use asyncio.run * fix: format --------- Co-authored-by: Amna Mubashar <amnahkhan.ak@gmail.com> Co-authored-by: David S. Batista <dsbatista@gmail.com>
157 lines
5.6 KiB
Python
157 lines
5.6 KiB
Python
from dataclasses import dataclass, field
|
|
from typing import Tuple, List, Dict, Any, Set, Union
|
|
from pathlib import Path
|
|
import re
|
|
import pytest
|
|
import asyncio
|
|
|
|
from pytest_bdd import when, then, parsers
|
|
|
|
from haystack import Pipeline, AsyncPipeline
|
|
|
|
PIPELINE_NAME_REGEX = re.compile(r"\[(.*)\]")
|
|
|
|
|
|
@pytest.fixture(params=[AsyncPipeline, Pipeline])
|
|
def pipeline_class(request):
|
|
"""
|
|
A parametrized fixture that will yield AsyncPipeline for one test run
|
|
and Pipeline for the next test run.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@dataclass
|
|
class PipelineRunData:
|
|
"""
|
|
Holds the inputs and expected outputs for a single Pipeline run.
|
|
"""
|
|
|
|
inputs: Dict[str, Any]
|
|
include_outputs_from: Set[str] = field(default_factory=set)
|
|
expected_outputs: Dict[str, Any] = field(default_factory=dict)
|
|
expected_component_calls: Dict[Tuple[str, int], Dict[str, Any]] = field(default_factory=dict)
|
|
|
|
|
|
@dataclass
|
|
class _PipelineResult:
|
|
"""
|
|
Holds the outputs and the run order of a single Pipeline run.
|
|
"""
|
|
|
|
outputs: Dict[str, Any]
|
|
component_calls: Dict[Tuple[str, int], Dict[str, Any]] = field(default_factory=dict)
|
|
|
|
|
|
@when("I run the Pipeline", target_fixture="pipeline_result")
|
|
def run_pipeline(
|
|
pipeline_data: Tuple[Union[AsyncPipeline, Pipeline], List[PipelineRunData]], spying_tracer
|
|
) -> Union[List[Tuple[_PipelineResult, PipelineRunData]], Exception]:
|
|
if isinstance(pipeline_data[0], AsyncPipeline):
|
|
return run_async_pipeline(pipeline_data, spying_tracer)
|
|
else:
|
|
return run_sync_pipeline(pipeline_data, spying_tracer)
|
|
|
|
|
|
def run_async_pipeline(
|
|
pipeline_data: Tuple[Union[AsyncPipeline], List[PipelineRunData]], spying_tracer
|
|
) -> Union[List[Tuple[_PipelineResult, PipelineRunData]], Exception]:
|
|
"""
|
|
Attempts to run a pipeline with the given inputs.
|
|
`pipeline_data` is a tuple that must contain:
|
|
* A Pipeline instance
|
|
* The data to run the pipeline with
|
|
|
|
If successful returns a tuple of the run outputs and the expected outputs.
|
|
In case an exceptions is raised returns that.
|
|
"""
|
|
pipeline, pipeline_run_data = pipeline_data[0], pipeline_data[1]
|
|
|
|
results: List[_PipelineResult] = []
|
|
|
|
async def run_inner(data, include_outputs_from):
|
|
"""Wrapper function to call pipeline.run_async method with required params."""
|
|
return await pipeline.run_async(data=data.inputs, include_outputs_from=include_outputs_from)
|
|
|
|
for data in pipeline_run_data:
|
|
try:
|
|
outputs = asyncio.run(run_inner(data, data.include_outputs_from))
|
|
|
|
component_calls = {
|
|
(span.tags["haystack.component.name"], span.tags["haystack.component.visits"]): span.tags[
|
|
"haystack.component.input"
|
|
]
|
|
for span in spying_tracer.spans
|
|
if "haystack.component.name" in span.tags and "haystack.component.visits" in span.tags
|
|
}
|
|
results.append(_PipelineResult(outputs=outputs, component_calls=component_calls))
|
|
spying_tracer.spans.clear()
|
|
except Exception as e:
|
|
return e
|
|
|
|
return [e for e in zip(results, pipeline_run_data)]
|
|
|
|
|
|
def run_sync_pipeline(
|
|
pipeline_data: Tuple[Pipeline, List[PipelineRunData]], spying_tracer
|
|
) -> Union[List[Tuple[_PipelineResult, PipelineRunData]], Exception]:
|
|
"""
|
|
Attempts to run a pipeline with the given inputs.
|
|
`pipeline_data` is a tuple that must contain:
|
|
* A Pipeline instance
|
|
* The data to run the pipeline with
|
|
|
|
If successful returns a tuple of the run outputs and the expected outputs.
|
|
In case an exceptions is raised returns that.
|
|
"""
|
|
pipeline, pipeline_run_data = pipeline_data[0], pipeline_data[1]
|
|
|
|
results: List[_PipelineResult] = []
|
|
|
|
for data in pipeline_run_data:
|
|
try:
|
|
outputs = pipeline.run(data=data.inputs, include_outputs_from=data.include_outputs_from)
|
|
|
|
component_calls = {
|
|
(span.tags["haystack.component.name"], span.tags["haystack.component.visits"]): span.tags[
|
|
"haystack.component.input"
|
|
]
|
|
for span in spying_tracer.spans
|
|
if "haystack.component.name" in span.tags and "haystack.component.visits" in span.tags
|
|
}
|
|
results.append(_PipelineResult(outputs=outputs, component_calls=component_calls))
|
|
spying_tracer.spans.clear()
|
|
except Exception as e:
|
|
return e
|
|
return [e for e in zip(results, pipeline_run_data)]
|
|
|
|
|
|
@then("draw it to file")
|
|
def draw_pipeline(pipeline_data: Tuple[Pipeline, List[PipelineRunData]], request):
|
|
"""
|
|
Draw the pipeline to a file with the same name as the test.
|
|
"""
|
|
if m := PIPELINE_NAME_REGEX.search(request.node.name):
|
|
name = m.group(1).replace(" ", "_")
|
|
pipeline = pipeline_data[0]
|
|
graphs_dir = Path(request.config.rootpath) / "test_pipeline_graphs"
|
|
graphs_dir.mkdir(exist_ok=True)
|
|
pipeline.draw(graphs_dir / f"{name}.png")
|
|
|
|
|
|
@then("it should return the expected result")
|
|
def check_pipeline_result(pipeline_result: List[Tuple[_PipelineResult, PipelineRunData]]):
|
|
for res, data in pipeline_result:
|
|
assert res.outputs == data.expected_outputs
|
|
|
|
|
|
@then("components are called with the expected inputs")
|
|
def check_component_calls(pipeline_result: List[Tuple[_PipelineResult, PipelineRunData]]):
|
|
for res, data in pipeline_result:
|
|
assert res.component_calls == data.expected_component_calls
|
|
|
|
|
|
@then(parsers.parse("it must have raised {exception_class_name}"))
|
|
def check_pipeline_raised(pipeline_result: Exception, exception_class_name: str):
|
|
assert pipeline_result.__class__.__name__ == exception_class_name
|