haystack/test/components/extractors/test_named_entity_extractor.py
Abdelrahman Kaseb b9a34dfebf
Fix: prevent in-place mutation of documents in Document Classifiers and Extractors (#9703)
* modify Documents Classifiers and Extractors to not make in-place changes

* Add e2e test for NER

* Add unit test for NER

* fixes + refinements

---------

Co-authored-by: anakin87 <stefanofiorucci@gmail.com>
2025-08-12 15:20:44 +02:00

179 lines
7.1 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
# Note: We do not test the Spacy backend in this module.
# Spacy is not installed in the test environment to keep the CI fast.
# We test the Spacy backend in e2e/pipelines/test_named_entity_extractor.py.
from unittest.mock import patch
import pytest
from haystack import ComponentError, DeserializationError, Document, Pipeline
from haystack.components.extractors import NamedEntityAnnotation, NamedEntityExtractor, NamedEntityExtractorBackend
from haystack.utils.auth import Secret
from haystack.utils.device import ComponentDevice
def test_named_entity_extractor_backend():
_ = NamedEntityExtractor(backend=NamedEntityExtractorBackend.HUGGING_FACE, model="dslim/bert-base-NER")
# private model
_ = NamedEntityExtractor(backend=NamedEntityExtractorBackend.HUGGING_FACE, model="deepset/bert-base-NER")
_ = NamedEntityExtractor(backend="hugging_face", model="dslim/bert-base-NER")
with pytest.raises(ComponentError, match=r"Invalid backend"):
NamedEntityExtractor(backend="random_backend", model="dslim/bert-base-NER")
def test_named_entity_extractor_serde():
extractor = NamedEntityExtractor(
backend=NamedEntityExtractorBackend.HUGGING_FACE,
model="dslim/bert-base-NER",
device=ComponentDevice.from_str("cuda:1"),
)
serde_data = extractor.to_dict()
new_extractor = NamedEntityExtractor.from_dict(serde_data)
assert type(new_extractor._backend) == type(extractor._backend)
assert new_extractor._backend.model_name == extractor._backend.model_name
assert new_extractor._backend.device == extractor._backend.device
with pytest.raises(DeserializationError, match=r"Couldn't deserialize"):
serde_data["init_parameters"].pop("backend")
_ = NamedEntityExtractor.from_dict(serde_data)
def test_to_dict_default(monkeypatch):
monkeypatch.delenv("HF_API_TOKEN", raising=False)
component = NamedEntityExtractor(
backend=NamedEntityExtractorBackend.HUGGING_FACE,
model="dslim/bert-base-NER",
device=ComponentDevice.from_str("mps"),
)
data = component.to_dict()
assert data == {
"type": "haystack.components.extractors.named_entity_extractor.NamedEntityExtractor",
"init_parameters": {
"backend": "HUGGING_FACE",
"model": "dslim/bert-base-NER",
"device": {"type": "single", "device": "mps"},
"pipeline_kwargs": {"model": "dslim/bert-base-NER", "device": "mps", "task": "ner"},
"token": {"type": "env_var", "env_vars": ["HF_API_TOKEN", "HF_TOKEN"], "strict": False},
},
}
def test_to_dict_with_parameters():
component = NamedEntityExtractor(
backend=NamedEntityExtractorBackend.HUGGING_FACE,
model="dslim/bert-base-NER",
device=ComponentDevice.from_str("mps"),
pipeline_kwargs={"model_kwargs": {"load_in_4bit": True}},
token=Secret.from_env_var("ENV_VAR", strict=False),
)
data = component.to_dict()
assert data == {
"type": "haystack.components.extractors.named_entity_extractor.NamedEntityExtractor",
"init_parameters": {
"backend": "HUGGING_FACE",
"model": "dslim/bert-base-NER",
"device": {"type": "single", "device": "mps"},
"pipeline_kwargs": {
"model": "dslim/bert-base-NER",
"device": "mps",
"task": "ner",
"model_kwargs": {"load_in_4bit": True},
},
"token": {"env_vars": ["ENV_VAR"], "strict": False, "type": "env_var"},
},
}
def test_named_entity_extractor_from_dict_no_default_parameters_hf(monkeypatch):
monkeypatch.delenv("HF_API_TOKEN", raising=False)
data = {
"type": "haystack.components.extractors.named_entity_extractor.NamedEntityExtractor",
"init_parameters": {"backend": "HUGGING_FACE", "model": "dslim/bert-base-NER"},
}
extractor = NamedEntityExtractor.from_dict(data)
assert extractor._backend.model_name == "dslim/bert-base-NER"
assert extractor._backend.device == ComponentDevice.resolve_device(None)
# tests for NamedEntityExtractor serialization/deserialization in a pipeline
def test_named_entity_extractor_pipeline_serde(tmp_path):
extractor = NamedEntityExtractor(backend=NamedEntityExtractorBackend.HUGGING_FACE, model="dslim/bert-base-NER")
p = Pipeline()
p.add_component(instance=extractor, name="extractor")
with open(tmp_path / "test_pipeline.yaml", "w") as f:
p.dump(f)
with open(tmp_path / "test_pipeline.yaml", "r") as f:
q = Pipeline.load(f)
assert p.to_dict() == q.to_dict(), "Pipeline serialization/deserialization with NamedEntityExtractor failed."
def test_named_entity_extractor_serde_none_device():
extractor = NamedEntityExtractor(
backend=NamedEntityExtractorBackend.HUGGING_FACE, model="dslim/bert-base-NER", device=None
)
serde_data = extractor.to_dict()
new_extractor = NamedEntityExtractor.from_dict(serde_data)
assert type(new_extractor._backend) == type(extractor._backend)
assert new_extractor._backend.model_name == extractor._backend.model_name
assert new_extractor._backend.device == extractor._backend.device
def test_named_entity_extractor_run():
"""Test the NamedEntityExtractor.run method with mocked model interaction."""
documents = [Document(content="My name is Clara and I live in Berkeley, California.")]
expected_annotations = [
[
NamedEntityAnnotation(entity="PER", start=11, end=16, score=0.95),
NamedEntityAnnotation(entity="LOC", start=31, end=39, score=0.88),
NamedEntityAnnotation(entity="LOC", start=41, end=51, score=0.92),
]
]
extractor = NamedEntityExtractor(backend=NamedEntityExtractorBackend.HUGGING_FACE, model="dslim/bert-base-NER")
with patch.object(extractor._backend, "annotate", return_value=expected_annotations) as mock_annotate:
extractor._backend.pipeline = "mocked_pipeline"
extractor._warmed_up = True
result = extractor.run(documents=documents, batch_size=2)
mock_annotate.assert_called_once_with(["My name is Clara and I live in Berkeley, California."], batch_size=2)
assert "documents" in result
assert len(result["documents"]) == 1
assert isinstance(result["documents"][0], Document)
assert result["documents"][0].content == documents[0].content
assert "named_entities" in result["documents"][0].meta
assert result["documents"][0].meta["named_entities"] == expected_annotations[0]
assert "named_entities" not in documents[0].meta
def test_named_entity_extractor_run_not_warmed_up():
"""Test that run method raises error when not warmed up."""
extractor = NamedEntityExtractor(backend=NamedEntityExtractorBackend.HUGGING_FACE, model="dslim/bert-base-NER")
documents = [Document(content="Test document")]
with pytest.raises(RuntimeError, match="The component NamedEntityExtractor was not warmed up"):
extractor.run(documents=documents)