haystack/tutorials/Tutorial5_Evaluation.py
2021-07-14 14:03:34 +02:00

167 lines
7.6 KiB
Python

from haystack.document_store.elasticsearch import ElasticsearchDocumentStore
from haystack.preprocessor.utils import fetch_archive_from_http
from haystack.retriever.sparse import ElasticsearchRetriever
from haystack.retriever.dense import DensePassageRetriever
from haystack.eval import EvalAnswers, EvalDocuments
from haystack.reader.farm import FARMReader
from haystack.preprocessor import PreProcessor
from haystack.utils import launch_es
from haystack import Pipeline
from farm.utils import initialize_device_settings
import logging
logger = logging.getLogger(__name__)
def tutorial5_evaluation():
##############################################
# Settings
##############################################
# Choose from Evaluation style from ['retriever_closed', 'reader_closed', 'retriever_reader_open']
# 'retriever_closed' - evaluates only the retriever, based on whether the gold_label document is retrieved.
# 'reader_closed' - evaluates only the reader in a closed domain fashion i.e. the reader is given one query
# and one document and metrics are calculated on whether the right position in this text is selected by
# the model as the answer span (i.e. SQuAD style)
# 'retriever_reader_open' - evaluates retriever and reader in open domain fashion i.e. a document is considered
# correctly retrieved if it contains the answer string within it. The reader is evaluated based purely on the
# predicted string, regardless of which document this came from and the position of the extracted span.
style = "retriever_reader_open"
# make sure these indices do not collide with existing ones, the indices will be wiped clean before data is inserted
doc_index = "tutorial5_docs"
label_index = "tutorial5_labels"
##############################################
# Code
##############################################
launch_es()
device, n_gpu = initialize_device_settings(use_cuda=True)
# Download evaluation data, which is a subset of Natural Questions development set containing 50 documents
doc_dir = "../data/nq"
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/nq_dev_subset_v2.json.zip"
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
# Connect to Elasticsearch
document_store = ElasticsearchDocumentStore(
host="localhost", username="", password="", index="document",
create_index=False, embedding_field="emb",
embedding_dim=768, excluded_meta_data=["emb"]
)
# Add evaluation data to Elasticsearch document store
# We first delete the custom tutorial indices to not have duplicate elements
# and also split our documents into shorter passages using the PreProcessor
preprocessor = PreProcessor(
split_by="word",
split_length=500,
split_overlap=0,
split_respect_sentence_boundary=False,
clean_empty_lines=False,
clean_whitespace=False
)
document_store.delete_all_documents(index=doc_index)
document_store.delete_all_documents(index=label_index)
document_store.add_eval_data(
filename="../data/nq/nq_dev_subset_v2.json",
doc_index=doc_index,
label_index=label_index,
preprocessor=preprocessor
)
# Let's prepare the labels that we need for the retriever and the reader
labels = document_store.get_all_labels_aggregated(index=label_index)
# Initialize Retriever
retriever = ElasticsearchRetriever(document_store=document_store)
# Alternative: Evaluate DensePassageRetriever
# Note, that DPR works best when you index short passages < 512 tokens as only those tokens will be used for the embedding.
# Here, for nq_dev_subset_v2.json we have avg. num of tokens = 5220(!).
# DPR still outperforms Elastic's BM25 by a small margin here.
# retriever = DensePassageRetriever(document_store=document_store,
# query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
# passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
# use_gpu=True,
# embed_title=True,
# remove_sep_tok_from_untitled_passages=True)
# document_store.update_embeddings(retriever, index=doc_index)
# Initialize Reader
reader = FARMReader(
model_name_or_path="deepset/roberta-base-squad2",
top_k=4,
return_no_answer=True
)
# Here we initialize the nodes that perform evaluation
eval_retriever = EvalDocuments()
eval_reader = EvalAnswers()
## Evaluate Retriever on its own in closed domain fashion
if style == "retriever_closed":
retriever_eval_results = retriever.eval(top_k=10, label_index=label_index, doc_index=doc_index)
## Retriever Recall is the proportion of questions for which the correct document containing the answer is
## among the correct documents
print("Retriever Recall:", retriever_eval_results["recall"])
## Retriever Mean Avg Precision rewards retrievers that give relevant documents a higher rank
print("Retriever Mean Avg Precision:", retriever_eval_results["map"])
# Evaluate Reader on its own in closed domain fashion (i.e. SQuAD style)
elif style == "reader_closed":
reader_eval_results = reader.eval(document_store=document_store, device=device, label_index=label_index, doc_index=doc_index)
# Evaluation of Reader can also be done directly on a SQuAD-formatted file without passing the data to Elasticsearch
#reader_eval_results = reader.eval_on_file("../data/nq", "nq_dev_subset_v2.json", device=device)
## Reader Top-N-Accuracy is the proportion of predicted answers that match with their corresponding correct answer
print("Reader Top-N-Accuracy:", reader_eval_results["top_n_accuracy"])
## Reader Exact Match is the proportion of questions where the predicted answer is exactly the same as the correct answer
print("Reader Exact Match:", reader_eval_results["EM"])
## Reader F1-Score is the average overlap between the predicted answers and the correct answers
print("Reader F1-Score:", reader_eval_results["f1"])
# Evaluate combination of Reader and Retriever in open domain fashion
elif style == "retriever_reader_open":
# Here is the pipeline definition
p = Pipeline()
p.add_node(component=retriever, name="ESRetriever", inputs=["Query"])
p.add_node(component=eval_retriever, name="EvalDocuments", inputs=["ESRetriever"])
p.add_node(component=reader, name="QAReader", inputs=["EvalDocuments"])
p.add_node(component=eval_reader, name="EvalAnswers", inputs=["QAReader"])
results = []
for l in labels:
res = p.run(
query=l.question,
top_k_retriever=10,
labels=l,
top_k_reader=10,
index=doc_index,
)
results.append(res)
eval_retriever.print()
print()
retriever.print_time()
print()
eval_reader.print(mode="reader")
print()
reader.print_time()
print()
eval_reader.print(mode="pipeline")
else:
raise ValueError(f'style={style} is not a valid option. Choose from retriever_closed, reader_closed, retriever_reader_open')
if __name__ == "__main__":
tutorial5_evaluation()
# This Haystack script was made with love by deepset in Berlin, Germany
# Haystack: https://github.com/deepset-ai/haystack
# deepset: https://deepset.ai/