mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-23 17:00:41 +00:00

* update to latest streamlit and st-annotated-text * improve ui results by passing dynamic height to annotated-text
173 lines
6.6 KiB
Python
173 lines
6.6 KiB
Python
import os
|
|
import sys
|
|
|
|
import pandas as pd
|
|
import streamlit as st
|
|
from annotated_text import annotated_text
|
|
|
|
# streamlit does not support any states out of the box. On every button click, streamlit reload the whole page
|
|
# and every value gets lost. To keep track of our feedback state we use the official streamlit gist mentioned
|
|
# here https://gist.github.com/tvst/036da038ab3e999a64497f42de966a92
|
|
import SessionState
|
|
from utils import feedback_doc
|
|
from utils import retrieve_doc
|
|
from utils import upload_doc
|
|
|
|
# Adjust to a question that you would like users to see in the search bar when they load the UI:
|
|
DEFAULT_QUESTION_AT_STARTUP = "Who is the father of Arya Stark?"
|
|
|
|
|
|
def annotate_answer(answer, context):
|
|
""" If we are using an extractive QA pipeline, we'll get answers
|
|
from the API that we highlight in the given context"""
|
|
start_idx = context.find(answer)
|
|
end_idx = start_idx + len(answer)
|
|
# calculate dynamic height depending on context length
|
|
height = int(len(context) * 0.50) + 5
|
|
annotated_text(context[:start_idx], (answer, "ANSWER", "#8ef"), context[end_idx:], height=height)
|
|
|
|
def show_plain_documents(text):
|
|
""" If we are using a plain document search pipeline, i.e. only retriever, we'll get plain documents
|
|
from the API that we just show without any highlighting"""
|
|
st.markdown(text)
|
|
|
|
|
|
def random_questions(df):
|
|
"""
|
|
Helper to get one random question + gold random_answer from the user's CSV 'eval_labels_example'.
|
|
This can then be shown in the UI when the evaluation mode is selected. Users can easily give feedback on the
|
|
model's results and "enrich" the eval dataset with more acceptable labels
|
|
"""
|
|
random_row = df.sample(1)
|
|
random_question = random_row["Question Text"].values[0]
|
|
random_answer = random_row["Answer"].values[0]
|
|
return random_question, random_answer
|
|
|
|
|
|
# Define state
|
|
state_question = SessionState.get(
|
|
random_question=DEFAULT_QUESTION_AT_STARTUP, random_answer="", next_question="false", run_query="false"
|
|
)
|
|
|
|
# Initialize variables
|
|
eval_mode = False
|
|
random_question = DEFAULT_QUESTION_AT_STARTUP
|
|
eval_labels = os.getenv("EVAL_FILE", "eval_labels_example.csv")
|
|
|
|
# UI search bar and sidebar
|
|
st.write("# Haystack Demo")
|
|
st.sidebar.header("Options")
|
|
top_k_reader = st.sidebar.slider("Max. number of answers", min_value=1, max_value=10, value=3, step=1)
|
|
top_k_retriever = st.sidebar.slider(
|
|
"Max. number of documents from retriever", min_value=1, max_value=10, value=3, step=1
|
|
)
|
|
eval_mode = st.sidebar.checkbox("Evaluation mode")
|
|
debug = st.sidebar.checkbox("Show debug info")
|
|
|
|
st.sidebar.write("## File Upload:")
|
|
data_file = st.sidebar.file_uploader("", type=["pdf", "txt", "docx"])
|
|
# Upload file
|
|
if data_file:
|
|
raw_json = upload_doc(data_file)
|
|
st.sidebar.write(raw_json)
|
|
if debug:
|
|
st.subheader("REST API JSON response")
|
|
st.sidebar.write(raw_json)
|
|
|
|
# load csv into pandas dataframe
|
|
if eval_mode:
|
|
try:
|
|
df = pd.read_csv(eval_labels, sep=";")
|
|
except Exception:
|
|
sys.exit("The eval file was not found. Please check the README for more information.")
|
|
if (
|
|
state_question
|
|
and hasattr(state_question, "next_question")
|
|
and hasattr(state_question, "random_question")
|
|
and state_question.next_question
|
|
):
|
|
random_question = state_question.random_question
|
|
random_answer = state_question.random_answer
|
|
else:
|
|
random_question, random_answer = random_questions(df)
|
|
state_question.random_question = random_question
|
|
state_question.random_answer = random_answer
|
|
|
|
# Get next random question from the CSV
|
|
if eval_mode:
|
|
next_question = st.button("Load new question")
|
|
if next_question:
|
|
random_question, random_answer = random_questions(df)
|
|
state_question.random_question = random_question
|
|
state_question.random_answer = random_answer
|
|
state_question.next_question = "true"
|
|
state_question.run_query = "false"
|
|
else:
|
|
state_question.next_question = "false"
|
|
|
|
# Search bar
|
|
question = st.text_input("Please provide your query:", value=random_question)
|
|
if state_question and state_question.run_query:
|
|
run_query = state_question.run_query
|
|
st.button("Run")
|
|
else:
|
|
run_query = st.button("Run")
|
|
state_question.run_query = run_query
|
|
|
|
raw_json_feedback = ""
|
|
|
|
# Get results for query
|
|
if run_query:
|
|
with st.spinner(
|
|
"Performing neural search on documents... 🧠 \n "
|
|
"Do you want to optimize speed or accuracy? \n"
|
|
"Check out the docs: https://haystack.deepset.ai/docs/latest/optimizationmd "
|
|
):
|
|
results, raw_json = retrieve_doc(question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever)
|
|
|
|
# Show if we use a question of the given set
|
|
if question == random_question and eval_mode:
|
|
st.write("## Correct answers:")
|
|
random_answer
|
|
|
|
st.write("## Results:")
|
|
|
|
# Make every button key unique
|
|
count = 0
|
|
|
|
for result in results:
|
|
if result["answer"]:
|
|
annotate_answer(result["answer"], result["context"])
|
|
else:
|
|
show_plain_documents(result["context"])
|
|
st.write("**Relevance:** ", result["relevance"], "**Source:** ", result["source"])
|
|
if eval_mode:
|
|
# Define columns for buttons
|
|
button_col1, button_col2, button_col3, button_col4 = st.beta_columns([1, 1, 1, 6])
|
|
if button_col1.button("👍", key=(result["context"] + str(count)), help="Correct answer"):
|
|
raw_json_feedback = feedback_doc(
|
|
question, "true", result["document_id"], 1, "true", result["answer"], result["offset_start_in_doc"]
|
|
)
|
|
st.success("Thanks for your feedback")
|
|
if button_col2.button("👎", key=(result["context"] + str(count)), help="Wrong answer and wrong passage"):
|
|
raw_json_feedback = feedback_doc(
|
|
question,
|
|
"false",
|
|
result["document_id"],
|
|
1,
|
|
"false",
|
|
result["answer"],
|
|
result["offset_start_in_doc"],
|
|
)
|
|
st.success("Thanks for your feedback!")
|
|
if button_col3.button("👎👍", key=(result["context"] + str(count)), help="Wrong answer, but correct passage"):
|
|
raw_json_feedback = feedback_doc(
|
|
question, "false", result["document_id"], 1, "true", result["answer"], result["offset_start_in_doc"]
|
|
)
|
|
st.success("Thanks for your feedback!")
|
|
count += 1
|
|
st.write("___")
|
|
if debug:
|
|
st.subheader("REST API JSON response")
|
|
st.write(raw_json)
|