mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-09-03 05:13:34 +00:00

* add e2e tests * move tests to their own module * add e2e workflow * pylint * remove from job * fix index field name * skip test on sql * removed unused code * fix embedding tests * adjust test for pinecone * adjust assertions to the new documents * bad copypasta * test * fix tests * fix tests * fix test * fix tests * pylint * update milvus version * remove debug * move graphdb tests under e2e
108 lines
4.8 KiB
Python
108 lines
4.8 KiB
Python
from pathlib import Path
|
|
|
|
from haystack.nodes import Text2SparqlRetriever
|
|
from haystack.document_stores import GraphDBKnowledgeGraph, InMemoryKnowledgeGraph
|
|
from haystack.utils import fetch_archive_from_http
|
|
|
|
|
|
def test_graph_retrieval():
|
|
# we use a timeout double the default in the CI to account for slow runners
|
|
timeout = 20
|
|
|
|
# TODO rename doc_dir
|
|
graph_dir = "../data/tutorial10_knowledge_graph/"
|
|
s3_url = "https://fandom-qa.s3-eu-west-1.amazonaws.com/triples_and_config.zip"
|
|
fetch_archive_from_http(url=s3_url, output_dir=graph_dir)
|
|
|
|
# Fetch a pre-trained BART model that translates natural language questions to SPARQL queries
|
|
model_dir = "../saved_models/tutorial10_knowledge_graph/"
|
|
s3_url = "https://fandom-qa.s3-eu-west-1.amazonaws.com/saved_models/hp_v3.4.zip"
|
|
fetch_archive_from_http(url=s3_url, output_dir=model_dir)
|
|
|
|
kg = GraphDBKnowledgeGraph(index="tutorial_10_index")
|
|
kg.delete_index(timeout=timeout)
|
|
kg.create_index(config_path=Path(graph_dir + "repo-config.ttl"), timeout=timeout)
|
|
kg.import_from_ttl_file(index="tutorial_10_index", path=Path(graph_dir + "triples.ttl"), timeout=timeout)
|
|
triple = {
|
|
"p": {"type": "uri", "value": "https://deepset.ai/harry_potter/_paternalgrandfather"},
|
|
"s": {"type": "uri", "value": "https://deepset.ai/harry_potter/Melody_fawley"},
|
|
"o": {"type": "uri", "value": "https://deepset.ai/harry_potter/Marshall_fawley"},
|
|
}
|
|
triples = kg.get_all_triples()
|
|
assert len(triples) > 0
|
|
assert triple in triples
|
|
|
|
# Define prefixes for names of resources so that we can use shorter resource names in queries
|
|
prefixes = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
|
|
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
|
|
PREFIX hp: <https://deepset.ai/harry_potter/>
|
|
"""
|
|
kg.prefixes = prefixes
|
|
|
|
kgqa_retriever = Text2SparqlRetriever(knowledge_graph=kg, model_name_or_path=model_dir + "hp_v3.4")
|
|
|
|
result = kgqa_retriever.retrieve(query="In which house is Harry Potter?")
|
|
assert result[0] == {
|
|
"answer": ["https://deepset.ai/harry_potter/Gryffindor"],
|
|
"prediction_meta": {
|
|
"model": "Text2SparqlRetriever",
|
|
"sparql_query": "select ?a { hp:Harry_potter hp:house ?a . }",
|
|
},
|
|
}
|
|
|
|
result = kgqa_retriever._query_kg(
|
|
sparql_query="select distinct ?sbj where { ?sbj hp:job hp:Keeper_of_keys_and_grounds . }"
|
|
)
|
|
assert result[0][0] == "https://deepset.ai/harry_potter/Rubeus_hagrid"
|
|
|
|
result = kgqa_retriever._query_kg(
|
|
sparql_query="select distinct ?obj where { <https://deepset.ai/harry_potter/Hermione_granger> <https://deepset.ai/harry_potter/patronus> ?obj . }"
|
|
)
|
|
assert result[0][0] == "https://deepset.ai/harry_potter/Otter"
|
|
|
|
|
|
def test_inmemory_graph_retrieval():
|
|
# TODO rename doc_dir
|
|
graph_dir = "../data/tutorial10_knowledge_graph/"
|
|
s3_url = "https://fandom-qa.s3-eu-west-1.amazonaws.com/triples_and_config.zip"
|
|
fetch_archive_from_http(url=s3_url, output_dir=graph_dir)
|
|
|
|
# Fetch a pre-trained BART model that translates natural language questions to SPARQL queries
|
|
model_dir = "../saved_models/tutorial10_knowledge_graph/"
|
|
s3_url = "https://fandom-qa.s3-eu-west-1.amazonaws.com/saved_models/hp_v3.4.zip"
|
|
fetch_archive_from_http(url=s3_url, output_dir=model_dir)
|
|
|
|
kg = InMemoryKnowledgeGraph(index="tutorial_10_index")
|
|
kg.delete_index()
|
|
kg.create_index()
|
|
kg.import_from_ttl_file(index="tutorial_10_index", path=Path(graph_dir + "triples.ttl"))
|
|
triple = {
|
|
"p": {"type": "uri", "value": "https://deepset.ai/harry_potter/_paternalgrandfather"},
|
|
"s": {"type": "uri", "value": "https://deepset.ai/harry_potter/Melody_fawley"},
|
|
"o": {"type": "uri", "value": "https://deepset.ai/harry_potter/Marshall_fawley"},
|
|
}
|
|
triples = kg.get_all_triples()
|
|
assert len(triples) > 0
|
|
assert triple in triples
|
|
|
|
kgqa_retriever = Text2SparqlRetriever(knowledge_graph=kg, model_name_or_path=model_dir + "hp_v3.4")
|
|
|
|
result = kgqa_retriever.retrieve(query="In which house is Harry Potter?")
|
|
assert result[0] == {
|
|
"answer": ["https://deepset.ai/harry_potter/Gryffindor"],
|
|
"prediction_meta": {
|
|
"model": "Text2SparqlRetriever",
|
|
"sparql_query": "select ?a { hp:Harry_potter hp:house ?a . }",
|
|
},
|
|
}
|
|
|
|
result = kgqa_retriever._query_kg(
|
|
sparql_query="select distinct ?sbj where { ?sbj hp:job hp:Keeper_of_keys_and_grounds . }"
|
|
)
|
|
assert result[0][0] == "https://deepset.ai/harry_potter/Rubeus_hagrid"
|
|
|
|
result = kgqa_retriever._query_kg(
|
|
sparql_query="select distinct ?obj where { <https://deepset.ai/harry_potter/Hermione_granger> <https://deepset.ai/harry_potter/patronus> ?obj . }"
|
|
)
|
|
assert result[0][0] == "https://deepset.ai/harry_potter/Otter"
|