haystack/e2e/pipelines/test_standard_pipelines_batch.py
ZanSara c802305ccf
test: move tests on standard pipelines in e2e/ (#4309)
* move out standard pipelines e2e

* fixing unit tests

* add test data

* feedback

* pylint

* black
2023-03-06 17:26:19 +01:00

115 lines
5.4 KiB
Python

from haystack.document_stores import InMemoryDocumentStore
from haystack.pipelines import FAQPipeline, DocumentSearchPipeline, MostSimilarDocumentsPipeline
from haystack.nodes import EmbeddingRetriever
from haystack.schema import Document
def test_faq_pipeline_batch():
documents = [
{"content": "How to test module-1?", "meta": {"source": "wiki1", "answer": "Using tests for module-1"}},
{"content": "How to test module-2?", "meta": {"source": "wiki2", "answer": "Using tests for module-2"}},
{"content": "How to test module-3?", "meta": {"source": "wiki3", "answer": "Using tests for module-3"}},
{"content": "How to test module-4?", "meta": {"source": "wiki4", "answer": "Using tests for module-4"}},
{"content": "How to test module-5?", "meta": {"source": "wiki5", "answer": "Using tests for module-5"}},
]
document_store = InMemoryDocumentStore()
retriever = EmbeddingRetriever(
document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2"
)
document_store.write_documents(documents)
document_store.update_embeddings(retriever)
pipeline = FAQPipeline(retriever=retriever)
output = pipeline.run_batch(queries=["How to test this?", "How to test this?"], params={"Retriever": {"top_k": 3}})
assert len(output["answers"]) == 2 # 2 queries
assert len(output["answers"][0]) == 3 # 3 answers per query
assert output["queries"][0].startswith("How to")
assert output["answers"][0][0].answer.startswith("Using tests")
def test_document_search_pipeline_batch():
documents = [
{"content": "Sample text for document-1", "meta": {"source": "wiki1"}},
{"content": "Sample text for document-2", "meta": {"source": "wiki2"}},
{"content": "Sample text for document-3", "meta": {"source": "wiki3"}},
{"content": "Sample text for document-4", "meta": {"source": "wiki4"}},
{"content": "Sample text for document-5", "meta": {"source": "wiki5"}},
]
document_store = InMemoryDocumentStore()
retriever = EmbeddingRetriever(
document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2"
)
document_store.write_documents(documents)
document_store.update_embeddings(retriever)
pipeline = DocumentSearchPipeline(retriever=retriever)
output = pipeline.run_batch(queries=["How to test this?", "How to test this?"], params={"top_k": 4})
assert len(output["documents"]) == 2 # 2 queries
assert len(output["documents"][0]) == 4 # 4 docs per query
def test_most_similar_documents_pipeline_batch():
documents = [
{"id": "a", "content": "Sample text for document-1", "meta": {"source": "wiki1"}},
{"id": "b", "content": "Sample text for document-2", "meta": {"source": "wiki2"}},
{"content": "Sample text for document-3", "meta": {"source": "wiki3"}},
{"content": "Sample text for document-4", "meta": {"source": "wiki4"}},
{"content": "Sample text for document-5", "meta": {"source": "wiki5"}},
]
document_store = InMemoryDocumentStore()
retriever = EmbeddingRetriever(
document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2"
)
document_store.write_documents(documents)
document_store.update_embeddings(retriever)
docs_id: list = ["a", "b"]
pipeline = MostSimilarDocumentsPipeline(document_store=document_store)
list_of_documents = pipeline.run_batch(document_ids=docs_id)
assert len(list_of_documents[0]) > 1
assert isinstance(list_of_documents, list)
assert len(list_of_documents) == len(docs_id)
for another_list in list_of_documents:
assert isinstance(another_list, list)
for document in another_list:
assert isinstance(document, Document)
assert isinstance(document.id, str)
assert isinstance(document.content, str)
def test_most_similar_documents_pipeline_with_filters_batch():
documents = [
{"id": "a", "content": "Sample text for document-1", "meta": {"source": "wiki1"}},
{"id": "b", "content": "Sample text for document-2", "meta": {"source": "wiki2"}},
{"content": "Sample text for document-3", "meta": {"source": "wiki3"}},
{"content": "Sample text for document-4", "meta": {"source": "wiki4"}},
{"content": "Sample text for document-5", "meta": {"source": "wiki5"}},
]
document_store = InMemoryDocumentStore()
retriever = EmbeddingRetriever(
document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2"
)
document_store = InMemoryDocumentStore()
document_store.write_documents(documents)
document_store.update_embeddings(retriever)
docs_id: list = ["a", "b"]
filters = {"source": ["wiki3", "wiki4", "wiki5"]}
pipeline = MostSimilarDocumentsPipeline(document_store=document_store)
list_of_documents = pipeline.run_batch(document_ids=docs_id, filters=filters)
assert len(list_of_documents[0]) > 1
assert isinstance(list_of_documents, list)
assert len(list_of_documents) == len(docs_id)
for another_list in list_of_documents:
assert isinstance(another_list, list)
for document in another_list:
assert isinstance(document, Document)
assert isinstance(document.id, str)
assert isinstance(document.content, str)
assert document.meta["source"] in ["wiki3", "wiki4", "wiki5"]