haystack/test/nodes/test_generator.py
Vladimir Blagojevic 79bf25aaea
feat: Add Azure as OpenAI endpoint (#4170)
* Add Azure as OpenAI endpoint
---------

Co-authored-by: Sebastian Lee <sebastian.lee@deepset.ai>
2023-03-02 09:55:09 +01:00

177 lines
7.7 KiB
Python

import os
import sys
from typing import List
import pytest
from haystack.schema import Document
from haystack.nodes.answer_generator import Seq2SeqGenerator, OpenAIAnswerGenerator
from haystack.pipelines import GenerativeQAPipeline
from haystack.nodes import PromptTemplate
import logging
@pytest.mark.integration
@pytest.mark.generator
def test_rag_token_generator(rag_generator, docs_with_true_emb):
query = "What is capital of the Germany?"
generated_docs = rag_generator.predict(query=query, documents=docs_with_true_emb, top_k=1)
answers = generated_docs["answers"]
assert len(answers) == 1
assert "berlin" in answers[0].answer
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["embedding"], indirect=True)
def test_generator_pipeline(document_store, retriever, rag_generator, docs_with_true_emb):
document_store.write_documents(docs_with_true_emb)
query = "What is capital of the Germany?"
pipeline = GenerativeQAPipeline(retriever=retriever, generator=rag_generator)
output = pipeline.run(query=query, params={"Generator": {"top_k": 2}, "Retriever": {"top_k": 1}})
answers = output["answers"]
assert len(answers) == 2
assert "berlin" in answers[0].answer
for doc_idx, document in enumerate(output["documents"]):
assert document.id == answers[0].document_ids[doc_idx]
assert document.meta == answers[0].meta["doc_metas"][doc_idx]
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="Causes OOM on windows github runner")
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["retribert", "dpr_lfqa"], indirect=True)
@pytest.mark.parametrize("lfqa_generator", ["yjernite/bart_eli5", "vblagoje/bart_lfqa"], indirect=True)
@pytest.mark.embedding_dim(128)
def test_lfqa_pipeline(document_store, retriever, lfqa_generator, docs_with_true_emb):
# reuse existing DOCS but regenerate embeddings with retribert
docs: List[Document] = []
for d in docs_with_true_emb:
docs.append(Document(content=d.content))
document_store.write_documents(docs)
document_store.update_embeddings(retriever)
query = "Tell me about Berlin?"
pipeline = GenerativeQAPipeline(generator=lfqa_generator, retriever=retriever)
output = pipeline.run(query=query, params={"top_k": 1})
answers = output["answers"]
assert len(answers) == 1, answers
assert "Germany" in answers[0].answer, answers[0].answer
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["retribert"], indirect=True)
@pytest.mark.embedding_dim(128)
def test_lfqa_pipeline_unknown_converter(document_store, retriever, docs_with_true_emb):
# reuse existing DOCS but regenerate embeddings with retribert
docs: List[Document] = []
for d in docs_with_true_emb:
docs.append(Document(content=d.content))
document_store.write_documents(docs)
document_store.update_embeddings(retriever)
seq2seq = Seq2SeqGenerator(model_name_or_path="patrickvonplaten/t5-tiny-random")
query = "Tell me about Berlin?"
pipeline = GenerativeQAPipeline(retriever=retriever, generator=seq2seq)
# raises exception as we don't have converter for "patrickvonplaten/t5-tiny-random" in Seq2SeqGenerator
with pytest.raises(Exception) as exception_info:
output = pipeline.run(query=query, params={"top_k": 1})
assert "doesn't have input converter registered for patrickvonplaten/t5-tiny-random" in str(exception_info.value)
@pytest.mark.integration
@pytest.mark.generator
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["retribert"], indirect=True)
@pytest.mark.embedding_dim(128)
def test_lfqa_pipeline_invalid_converter(document_store, retriever, docs_with_true_emb):
# reuse existing DOCS but regenerate embeddings with retribert
docs: List[Document] = []
for d in docs_with_true_emb:
docs.append(Document(content=d.content))
document_store.write_documents(docs)
document_store.update_embeddings(retriever)
class _InvalidConverter:
def __call__(self, some_invalid_para: str, another_invalid_param: str) -> None:
pass
seq2seq = Seq2SeqGenerator(
model_name_or_path="patrickvonplaten/t5-tiny-random", input_converter=_InvalidConverter()
)
query = "This query will fail due to InvalidConverter used"
pipeline = GenerativeQAPipeline(retriever=retriever, generator=seq2seq)
# raises exception as we are using invalid method signature in _InvalidConverter
with pytest.raises(Exception) as exception_info:
output = pipeline.run(query=query, params={"top_k": 1})
assert "does not have a valid __call__ method signature" in str(exception_info.value)
@pytest.mark.integration
@pytest.mark.parametrize("haystack_openai_config", ["openai", "azure"], indirect=True)
def test_openai_answer_generator(haystack_openai_config, docs):
if not haystack_openai_config:
pytest.skip("No API key found, skipping test")
openai_generator = OpenAIAnswerGenerator(
api_key=haystack_openai_config["api_key"],
azure_base_url=haystack_openai_config.get("azure_base_url", None),
azure_deployment_name=haystack_openai_config.get("azure_deployment_name", None),
model="text-babbage-001",
top_k=1,
)
prediction = openai_generator.predict(query="Who lives in Berlin?", documents=docs, top_k=1)
assert len(prediction["answers"]) == 1
assert "Carla" in prediction["answers"][0].answer
@pytest.mark.integration
@pytest.mark.parametrize("haystack_openai_config", ["openai", "azure"], indirect=True)
def test_openai_answer_generator_custom_template(haystack_openai_config, docs):
if not haystack_openai_config:
pytest.skip("No API key found, skipping test")
lfqa_prompt = PromptTemplate(
name="lfqa",
prompt_text="""
Synthesize a comprehensive answer from your knowledge and the following topk most relevant paragraphs and the given question.
\n===\Paragraphs: $context\n===\n$query""",
prompt_params=["context", "query"],
)
node = OpenAIAnswerGenerator(
api_key=haystack_openai_config["api_key"],
azure_base_url=haystack_openai_config.get("azure_base_url", None),
azure_deployment_name=haystack_openai_config.get("azure_deployment_name", None),
model="text-babbage-001",
top_k=1,
prompt_template=lfqa_prompt,
)
prediction = node.predict(query="Who lives in Berlin?", documents=docs, top_k=1)
assert len(prediction["answers"]) == 1
@pytest.mark.integration
@pytest.mark.parametrize("haystack_openai_config", ["openai", "azure"], indirect=True)
def test_openai_answer_generator_max_token(haystack_openai_config, docs, caplog):
if not haystack_openai_config:
pytest.skip("No API key found, skipping test")
openai_generator = OpenAIAnswerGenerator(
api_key=haystack_openai_config["api_key"],
azure_base_url=haystack_openai_config.get("azure_base_url", None),
azure_deployment_name=haystack_openai_config.get("azure_deployment_name", None),
model="text-babbage-001",
top_k=1,
)
openai_generator.MAX_TOKENS_LIMIT = 116
with caplog.at_level(logging.INFO):
prediction = openai_generator.predict(query="Who lives in Berlin?", documents=docs, top_k=1)
assert "Skipping all of the provided Documents" in caplog.text
assert len(prediction["answers"]) == 1
# Can't easily check content of answer since it is generative and can change between runs