haystack/test/nodes/test_table_reader.py
Sebastian 7d5e7c089c
refactor: Use TableQuestionAnsweringPipeline from transformers (#4303)
* Added changes from table-qa-pipeline

* Moved classes around to make diff to main look nicer.

* Cleaned things up. Removed option to return_no_answer (not needed), added docs and added integration marks.

* Remove unneeded code

* Added fix for test

* Add check for document_ids in answer

* Prevent passing of empty list to np.mean

* Batching doesn't work with TableQAPipeline b/c of HF issue

* Cleanup of table reader tests, added check for document ids.

* Fixing pylint

* More pylint

* PR comments

---------

Co-authored-by: bogdankostic <bogdankostic@web.de>
2023-03-07 11:46:50 +01:00

257 lines
12 KiB
Python

import logging
import pandas as pd
import torch
import pytest
from haystack.schema import Document, Answer
from haystack.pipelines.base import Pipeline
@pytest.fixture
def table_doc1():
data = {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": [58, 47, 60],
"number of movies": [87, 53, 69],
"date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
}
return Document(content=pd.DataFrame(data), content_type="table", id="doc1")
@pytest.fixture
def table_doc2():
data = {
"actors": ["chris pratt", "gal gadot", "oprah winfrey"],
"age": [45, 36, 65],
"number of movies": [49, 34, 5],
"date of birth": ["12 january 1975", "5 april 1980", "15 september 1960"],
}
return Document(content=pd.DataFrame(data), content_type="table", id="doc2")
@pytest.fixture
def table_doc3():
data = {
"Mountain": ["Mount Everest", "K2", "Kangchenjunga", "Lhotse", "Makalu"],
"Height": ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"],
}
return Document(content=pd.DataFrame(data), content_type="table", id="doc3")
@pytest.mark.integration
@pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True)
def test_table_reader(table_reader_and_param, table_doc1, table_doc2):
table_reader, param = table_reader_and_param
query = "When was Di Caprio born?"
prediction = table_reader.predict(query=query, documents=[table_doc1, table_doc2])
assert prediction["query"] == "When was Di Caprio born?"
# Check number of answers
reference0 = {"tapas_small": {"num_answers": 2}, "rci": {"num_answers": 10}, "tapas_scored": {"num_answers": 6}}
assert len(prediction["answers"]) == reference0[param]["num_answers"]
# Check the first answer in the list
reference1 = {"tapas_small": {"score": 1.0}, "rci": {"score": -6.5301}, "tapas_scored": {"score": 0.50568}}
assert prediction["answers"][0].score == pytest.approx(reference1[param]["score"], rel=1e-3)
assert prediction["answers"][0].answer == "11 november 1974"
assert prediction["answers"][0].offsets_in_context[0].start == 7
assert prediction["answers"][0].offsets_in_context[0].end == 8
assert prediction["answers"][0].document_ids == ["doc1"]
# Check the second answer in the list
reference2 = {
"tapas_small": {"answer": "5 april 1980", "start": 7, "end": 8, "score": 0.86314, "doc_id": ["doc2"]},
"rci": {"answer": "47", "start": 5, "end": 6, "score": -6.836, "doc_id": ["doc1"]},
"tapas_scored": {"answer": "brad pitt", "start": 0, "end": 1, "score": 0.49078, "doc_id": ["doc1"]},
}
assert prediction["answers"][1].score == pytest.approx(reference2[param]["score"], rel=1e-3)
assert prediction["answers"][1].answer == reference2[param]["answer"]
assert prediction["answers"][1].offsets_in_context[0].start == reference2[param]["start"]
assert prediction["answers"][1].offsets_in_context[0].end == reference2[param]["end"]
assert prediction["answers"][1].document_ids == reference2[param]["doc_id"]
@pytest.mark.integration
@pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True)
def test_table_reader_batch_single_query_single_doc_list(table_reader_and_param, table_doc1, table_doc2):
table_reader, param = table_reader_and_param
query = "When was Di Caprio born?"
prediction = table_reader.predict_batch(queries=[query], documents=[table_doc1, table_doc2])
# Expected output: List of lists of answers
assert isinstance(prediction["answers"], list)
assert isinstance(prediction["answers"][0], list)
assert isinstance(prediction["answers"][0][0], Answer)
assert prediction["queries"] == ["When was Di Caprio born?", "When was Di Caprio born?"]
# Check number of answers for each document
num_ans_reference = {
"tapas_small": {"num_answers": [1, 1]},
"rci": {"num_answers": [10, 10]},
"tapas_scored": {"num_answers": [3, 3]},
}
assert len(prediction["answers"]) == 2
for i, ans_list in enumerate(prediction["answers"]):
assert len(ans_list) == num_ans_reference[param]["num_answers"][i]
# Check first answer from the 1ST document
score_reference = {"tapas_small": {"score": 1.0}, "rci": {"score": -6.5301}, "tapas_scored": {"score": 0.50568}}
assert prediction["answers"][0][0].score == pytest.approx(score_reference[param]["score"], rel=1e-3)
assert prediction["answers"][0][0].answer == "11 november 1974"
assert prediction["answers"][0][0].offsets_in_context[0].start == 7
assert prediction["answers"][0][0].offsets_in_context[0].end == 8
assert prediction["answers"][0][0].document_ids == ["doc1"]
# Check first answer from the 2ND Document
ans_reference = {
"tapas_small": {"answer": "5 april 1980", "start": 7, "end": 8, "score": 0.86314, "doc_id": ["doc2"]},
"rci": {"answer": "15 september 1960", "start": 11, "end": 12, "score": -7.9429, "doc_id": ["doc2"]},
"tapas_scored": {"answer": "5", "start": 10, "end": 11, "score": 0.11485, "doc_id": ["doc2"]},
}
assert prediction["answers"][1][0].score == pytest.approx(ans_reference[param]["score"], rel=1e-3)
assert prediction["answers"][1][0].answer == ans_reference[param]["answer"]
assert prediction["answers"][1][0].offsets_in_context[0].start == ans_reference[param]["start"]
assert prediction["answers"][1][0].offsets_in_context[0].end == ans_reference[param]["end"]
assert prediction["answers"][1][0].document_ids == ans_reference[param]["doc_id"]
@pytest.mark.integration
@pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True)
def test_table_reader_batch_single_query_multiple_doc_lists(table_reader_and_param, table_doc1, table_doc2, table_doc3):
table_reader, param = table_reader_and_param
query = "When was Di Caprio born?"
prediction = table_reader.predict_batch(queries=[query], documents=[[table_doc1, table_doc2], [table_doc3]])
# Expected output: List of lists of answers
assert isinstance(prediction["answers"], list)
assert isinstance(prediction["answers"][0], list)
assert isinstance(prediction["answers"][0][0], Answer)
assert prediction["queries"] == ["When was Di Caprio born?", "When was Di Caprio born?"]
# Check number of answers for each document
num_ans_reference = {
"tapas_small": {"num_answers": [2, 1]},
"rci": {"num_answers": [10, 10]},
"tapas_scored": {"num_answers": [6, 3]},
}
assert len(prediction["answers"]) == 2
for i, ans_list in enumerate(prediction["answers"]):
assert len(ans_list) == num_ans_reference[param]["num_answers"][i]
@pytest.mark.integration
@pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True)
def test_table_reader_batch_multiple_queries_single_doc_list(table_reader_and_param, table_doc1, table_doc2):
table_reader, param = table_reader_and_param
query = "When was Di Caprio born?"
query2 = "When was Brad Pitt born?"
prediction = table_reader.predict_batch(queries=[query, query2], documents=[table_doc1, table_doc2])
# Expected output: List of lists of lists of answers
assert isinstance(prediction["answers"], list)
assert isinstance(prediction["answers"][0], list)
assert isinstance(prediction["answers"][0][0], list)
assert isinstance(prediction["answers"][0][0][0], Answer)
assert prediction["queries"] == [
"When was Di Caprio born?",
"When was Di Caprio born?",
"When was Brad Pitt born?",
"When was Brad Pitt born?",
]
# Check number of answers for each document
num_ans_reference = {
"tapas_small": {"num_answers": [[1, 1], [1, 1]]},
"rci": {"num_answers": [[10, 10], [10, 10]]},
"tapas_scored": {"num_answers": [[3, 3], [3, 3]]},
}
assert len(prediction["answers"]) == 2 # Predictions for 2 queries
for i, ans_list1 in enumerate(prediction["answers"]):
for j, ans_list2 in enumerate(ans_list1):
assert len(ans_list2) == num_ans_reference[param]["num_answers"][i][j]
@pytest.mark.integration
@pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True)
def test_table_reader_batch_multiple_queries_multiple_doc_lists(
table_reader_and_param, table_doc1, table_doc2, table_doc3
):
table_reader, param = table_reader_and_param
query = "When was Di Caprio born?"
query2 = "Which is the tallest mountain?"
prediction = table_reader.predict_batch(queries=[query, query2], documents=[[table_doc1, table_doc2], [table_doc3]])
# Expected output: List of lists answers
assert isinstance(prediction["answers"], list)
assert isinstance(prediction["answers"][0], list)
assert isinstance(prediction["answers"][0][0], Answer)
assert prediction["queries"] == ["When was Di Caprio born?", "Which is the tallest mountain?"]
# Check number of answers for each document
num_ans_reference = {
"tapas_small": {"num_answers": [2, 1]},
"rci": {"num_answers": [10, 10]},
"tapas_scored": {"num_answers": [6, 3]},
}
assert len(prediction["answers"]) == 2 # Predictions for 2 collections of documents
for i, ans_list in enumerate(prediction["answers"]):
assert len(ans_list) == num_ans_reference[param]["num_answers"][i]
@pytest.mark.integration
@pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True)
def test_table_reader_in_pipeline(table_reader_and_param, table_doc1):
table_reader, param = table_reader_and_param
pipeline = Pipeline()
pipeline.add_node(table_reader, "TableReader", ["Query"])
query = "When was Di Caprio born?"
prediction = pipeline.run(query=query, documents=[table_doc1])
assert prediction["answers"][0].answer == "11 november 1974"
assert prediction["answers"][0].offsets_in_context[0].start == 7
assert prediction["answers"][0].offsets_in_context[0].end == 8
assert prediction["answers"][0].document_ids == ["doc1"]
@pytest.mark.integration
@pytest.mark.parametrize("table_reader_and_param", ["tapas_base"], indirect=True)
def test_table_reader_aggregation(table_reader_and_param, table_doc3):
table_reader, param = table_reader_and_param
query = "How tall are all mountains on average?"
prediction = table_reader.predict(query=query, documents=[table_doc3])
assert prediction["answers"][0].score == pytest.approx(1.0)
assert prediction["answers"][0].answer == "8609.2 m"
assert prediction["answers"][0].meta["aggregation_operator"] == "AVERAGE"
assert prediction["answers"][0].meta["answer_cells"] == ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"]
query = "How tall are all mountains together?"
prediction = table_reader.predict(query=query, documents=[table_doc3])
assert prediction["answers"][0].score == pytest.approx(1.0)
assert prediction["answers"][0].answer == "43046.0 m"
assert prediction["answers"][0].meta["aggregation_operator"] == "SUM"
assert prediction["answers"][0].meta["answer_cells"] == ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"]
@pytest.mark.integration
@pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True)
def test_table_without_rows(caplog, table_reader_and_param):
table_reader, param = table_reader_and_param
# empty DataFrame
table = pd.DataFrame()
document = Document(content=table, content_type="table", id="no_rows")
with caplog.at_level(logging.WARNING):
predictions = table_reader.predict(query="test", documents=[document])
assert "Skipping document with id 'no_rows'" in caplog.text
assert len(predictions["answers"]) == 0
@pytest.mark.integration
@pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True)
def test_text_document(caplog, table_reader_and_param):
table_reader, param = table_reader_and_param
document = Document(content="text", id="text_doc")
with caplog.at_level(logging.WARNING):
predictions = table_reader.predict(query="test", documents=[document])
assert "Skipping document with id 'text_doc'" in caplog.text
assert len(predictions["answers"]) == 0