mirror of
				https://github.com/deepset-ai/haystack.git
				synced 2025-11-03 19:29:32 +00:00 
			
		
		
		
	* Fix the embedding count function of InMemoryDocumentStore * Adding some doc strings explaining how many docs with embeddings to expect.
		
			
				
	
	
		
			263 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			263 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
 | 
						|
from haystack.document_stores.weaviate import WeaviateDocumentStore
 | 
						|
from haystack.schema import Document
 | 
						|
 | 
						|
from .test_base import DocumentStoreBaseTestAbstract
 | 
						|
 | 
						|
 | 
						|
import uuid
 | 
						|
from unittest.mock import MagicMock
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from haystack.schema import Document
 | 
						|
 | 
						|
embedding_dim = 768
 | 
						|
 | 
						|
 | 
						|
def get_uuid():
 | 
						|
    return str(uuid.uuid4())
 | 
						|
 | 
						|
 | 
						|
class TestWeaviateDocumentStore(DocumentStoreBaseTestAbstract):
 | 
						|
    # Constants
 | 
						|
 | 
						|
    index_name = "DocumentsTest"
 | 
						|
 | 
						|
    @pytest.fixture
 | 
						|
    def ds(self):
 | 
						|
        return WeaviateDocumentStore(index=self.index_name, recreate_index=True, return_embedding=True)
 | 
						|
 | 
						|
    @pytest.fixture(scope="class")
 | 
						|
    def documents(self):
 | 
						|
        documents = []
 | 
						|
        for i in range(3):
 | 
						|
            documents.append(
 | 
						|
                Document(
 | 
						|
                    id=get_uuid(),
 | 
						|
                    content=f"A Foo Document {i}",
 | 
						|
                    meta={"name": f"name_{i}", "year": "2020", "month": "01", "numbers": [2.0, 4.0]},
 | 
						|
                    embedding=np.random.rand(768).astype(np.float32),
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
            documents.append(
 | 
						|
                Document(
 | 
						|
                    id=get_uuid(),
 | 
						|
                    content=f"A Bar Document {i}",
 | 
						|
                    meta={"name": f"name_{i}", "year": "2021", "month": "02", "numbers": [-2.0, -4.0]},
 | 
						|
                    embedding=np.random.rand(768).astype(np.float32),
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
            documents.append(
 | 
						|
                Document(
 | 
						|
                    id=get_uuid(),
 | 
						|
                    content=f"A Baz Document {i}",
 | 
						|
                    meta={"name": f"name_{i}", "month": "03"},
 | 
						|
                    embedding=np.random.rand(768).astype(np.float32),
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
        return documents
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_write_labels(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_delete_labels(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_delete_labels_by_id(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_delete_labels_by_filter(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_delete_labels_by_filter_id(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_get_label_count(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_write_labels_duplicate(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_write_get_all_labels(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_labels_with_long_texts(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_multilabel(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_multilabel_no_answer(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_multilabel_filter_aggregations(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.skip(reason="Weaviate does not support labels")
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_multilabel_meta_aggregations(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_ne_filters(self, ds, documents):
 | 
						|
        """
 | 
						|
        Weaviate doesn't include documents if the field is missing,
 | 
						|
        so we customize this test
 | 
						|
        """
 | 
						|
        ds.write_documents(documents)
 | 
						|
 | 
						|
        result = ds.get_all_documents(filters={"year": {"$ne": "2020"}})
 | 
						|
        assert len(result) == 3
 | 
						|
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_nin_filters(self, ds, documents):
 | 
						|
        """
 | 
						|
        Weaviate doesn't include documents if the field is missing,
 | 
						|
        so we customize this test
 | 
						|
        """
 | 
						|
        ds.write_documents(documents)
 | 
						|
 | 
						|
        result = ds.get_all_documents(filters={"year": {"$nin": ["2020", "2021", "n.a."]}})
 | 
						|
        assert len(result) == 0
 | 
						|
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_delete_index(self, ds, documents):
 | 
						|
        """Contrary to other Document Stores, this doesn't raise if the index is empty"""
 | 
						|
        ds.write_documents(documents, index="custom_index")
 | 
						|
        assert ds.get_document_count(index="custom_index") == len(documents)
 | 
						|
        ds.delete_index(index="custom_index")
 | 
						|
        assert ds.get_document_count(index="custom_index") == 0
 | 
						|
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_query_by_embedding(self, ds, documents):
 | 
						|
        ds.write_documents(documents)
 | 
						|
 | 
						|
        docs = ds.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32))
 | 
						|
        assert len(docs) == 9
 | 
						|
 | 
						|
        docs = ds.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32), top_k=1)
 | 
						|
        assert len(docs) == 1
 | 
						|
 | 
						|
        docs = ds.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32), filters={"name": ["name_1"]})
 | 
						|
        assert len(docs) == 3
 | 
						|
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_query(self, ds, documents):
 | 
						|
        ds.write_documents(documents)
 | 
						|
 | 
						|
        query_text = "Foo"
 | 
						|
        docs = ds.query(query_text)
 | 
						|
        assert len(docs) == 3
 | 
						|
 | 
						|
        # BM25 retrieval WITH filters is not yet supported as of Weaviate v1.14.1
 | 
						|
        # Should be from 1.18: https://github.com/semi-technologies/weaviate/issues/2393
 | 
						|
        # docs = ds.query(query_text, filters={"name": ["name_1"]})
 | 
						|
        # assert len(docs) == 1
 | 
						|
 | 
						|
        docs = ds.query(query=None, filters={"name": ["name_0"]})
 | 
						|
        assert len(docs) == 3
 | 
						|
 | 
						|
        docs = ds.query(query=None, filters={"content": [query_text.lower()]})
 | 
						|
        assert len(docs) == 3
 | 
						|
 | 
						|
        docs = ds.query(query=None, filters={"content": ["baz"]})
 | 
						|
        assert len(docs) == 3
 | 
						|
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_get_all_documents_unaffected_by_QUERY_MAXIMUM_RESULTS(self, ds, documents, monkeypatch):
 | 
						|
        """
 | 
						|
        Ensure `get_all_documents` works no matter the value of QUERY_MAXIMUM_RESULTS
 | 
						|
        see https://github.com/deepset-ai/haystack/issues/2517
 | 
						|
        """
 | 
						|
        ds.write_documents(documents)
 | 
						|
        monkeypatch.setattr(ds, "get_document_count", lambda **kwargs: 13_000)
 | 
						|
        docs = ds.get_all_documents()
 | 
						|
        assert len(docs) == 9
 | 
						|
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_deleting_by_id_or_by_filters(self, ds, documents):
 | 
						|
        ds.write_documents(documents)
 | 
						|
        # This test verifies that deleting an object by its ID does not first require fetching all documents. This fixes
 | 
						|
        # a bug, as described in https://github.com/deepset-ai/haystack/issues/2898
 | 
						|
        ds.get_all_documents = MagicMock(wraps=ds.get_all_documents)
 | 
						|
 | 
						|
        assert ds.get_document_count() == 9
 | 
						|
 | 
						|
        # Delete a document by its ID. This should bypass the get_all_documents() call
 | 
						|
        ds.delete_documents(ids=[documents[0].id])
 | 
						|
        ds.get_all_documents.assert_not_called()
 | 
						|
        assert ds.get_document_count() == 8
 | 
						|
 | 
						|
        ds.get_all_documents.reset_mock()
 | 
						|
        # Delete a document with filters. Prove that using the filters will go through get_all_documents()
 | 
						|
        ds.delete_documents(filters={"name": ["name_0"]})
 | 
						|
        ds.get_all_documents.assert_called()
 | 
						|
        assert ds.get_document_count() == 6
 | 
						|
 | 
						|
    @pytest.mark.integration
 | 
						|
    @pytest.mark.parametrize("similarity", ["cosine", "l2", "dot_product"])
 | 
						|
    def test_similarity_existing_index(self, similarity):
 | 
						|
        """Testing non-matching similarity"""
 | 
						|
        # create the document_store
 | 
						|
        document_store = WeaviateDocumentStore(
 | 
						|
            similarity=similarity, index=f"test_similarity_existing_index_{similarity}", recreate_index=True
 | 
						|
        )
 | 
						|
 | 
						|
        # try to connect to the same document store but using the wrong similarity
 | 
						|
        non_matching_similarity = "l2" if similarity == "cosine" else "cosine"
 | 
						|
        with pytest.raises(ValueError, match=r"This index already exists in Weaviate with similarity .*"):
 | 
						|
            document_store2 = WeaviateDocumentStore(
 | 
						|
                similarity=non_matching_similarity,
 | 
						|
                index=f"test_similarity_existing_index_{similarity}",
 | 
						|
                recreate_index=False,
 | 
						|
            )
 | 
						|
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_cant_write_id_in_meta(self, ds):
 | 
						|
        with pytest.raises(ValueError, match='"meta" info contains duplicate key "id"'):
 | 
						|
            ds.write_documents([Document(content="test", meta={"id": "test-id"})])
 | 
						|
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_cant_write_top_level_fields_in_meta(self, ds):
 | 
						|
        with pytest.raises(ValueError, match='"meta" info contains duplicate key "content"'):
 | 
						|
            ds.write_documents([Document(content="test", meta={"content": "test-id"})])
 | 
						|
 | 
						|
    @pytest.mark.integration
 | 
						|
    def test_get_embedding_count(self, ds, documents):
 | 
						|
        """
 | 
						|
        We expect 9 docs with embeddings because all documents in the documents fixture for this class contain
 | 
						|
        embeddings.
 | 
						|
        """
 | 
						|
        ds.write_documents(documents)
 | 
						|
        assert ds.get_embedding_count() == 9
 |