haystack/test/test_modeling_processor_saving_loading.py
Sara Zan d470b9d0bd
Improve dependency management (#1994)
* Fist attempt at using setup.cfg for dependency management

* Trying the new package on the CI and in Docker too

* Add composite extras_require

* Add the safe_import function for document store imports and add some try-catch statements on rest_api and ui imports

* Fix bug on class import and rephrase error message

* Introduce typing for optional modules and add type: ignore in sparse.py

* Include importlib_metadata backport for py3.7

* Add colab group to extra_requires

* Fix pillow version

* Fix grpcio

* Separate out the crawler as another extra

* Make paths relative in rest_api and ui

* Update the test matrix in the CI

* Add try catch statements around the optional imports too to account for direct imports

* Never mix direct deps with self-references and add ES deps to the base install

* Refactor several paths in tests to make them insensitive to the execution path

* Include tstadel review and re-introduce Milvus1 in the tests suite, to fix

* Wrap pdf conversion utils into safe_import

* Update some tutorials and rever Milvus1 as default for now, see #2067

* Fix mypy config


Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-01-26 18:12:55 +01:00

50 lines
1.5 KiB
Python

import logging
from pathlib import Path
from haystack.modeling.data_handler.processor import SquadProcessor
from haystack.modeling.model.tokenization import Tokenizer
from haystack.modeling.utils import set_all_seeds
import torch
from conftest import SAMPLES_PATH
def test_processor_saving_loading(caplog):
if caplog is not None:
caplog.set_level(logging.CRITICAL)
set_all_seeds(seed=42)
lang_model = "roberta-base"
tokenizer = Tokenizer.load(
pretrained_model_name_or_path=lang_model, do_lower_case=False
)
processor = SquadProcessor(
tokenizer=tokenizer,
max_seq_len=256,
label_list=["start_token", "end_token"],
train_filename="train-sample.json",
dev_filename="dev-sample.json",
test_filename=None,
data_dir=SAMPLES_PATH/"qa",
)
dicts = processor.file_to_dicts(file=SAMPLES_PATH/"qa"/"dev-sample.json")
data, tensor_names, _ = processor.dataset_from_dicts(dicts=dicts, indices=[1])
save_dir = Path("testsave/processor")
processor.save(save_dir)
processor = processor.load_from_dir(save_dir)
dicts = processor.file_to_dicts(file=SAMPLES_PATH/"qa"/"dev-sample.json")
data_loaded, tensor_names_loaded, _ = processor.dataset_from_dicts(dicts, indices=[1])
assert tensor_names == tensor_names_loaded
for i in range(len(data.tensors)):
assert torch.all(torch.eq(data.tensors[i], data_loaded.tensors[i]))
if __name__ == "__main__":
test_processor_saving_loading(None)